Simulink® Design Verifier™
User's Guide

<

MATLAB&SIMULINK?

R2019b >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ User's Guide
© COPYRIGHT 2007-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered
trademarks of Prover Technology AB in Sweden, the United States and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a+)
Revised for Version 1.1 (Release 2007Db)
Revised for Version 1.2 (Release 2008a)
Revised for Version 1.3 (Release 2008b)
Revised for Version 1.4 (Release 2009a)
Revised for Version 1.5 (Release 2009Db)
Revised for Version 1.6 (Release 2010a)
Revised for Version 1.7 (Release 2010Db)
Revised for Version 2.0 (Release 2011a)
Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 3.0 (Release 2015b)
Rereleased for Version 2.8.1 (Release
2015aSP1)

Revised for Version 3.1
Revised for Version 3.2
Revised for Version 3.3
Revised for Version 3.4
Revised for Version 3.5
Revised for Version 4.0
Revised for Version 4.1
Revised for Version 4.2

Release 2016a)
Release 2016Db)
Release 2017a)
Release 2017Db)
Release 2018a)
Release 2018b)
Release 2019a)
Release 2019Db)

Py

Contents

Acknowledgments

Getting Started

1]

Simulink Design Verifier Product Description 1-2
Simulink Design Verifier Block Library 1-3
AnalyzeaModel e 1-4
About ThisExample 1-4
OpentheModel 1-4
Generate Test Casesoov vt 1-6
Combine Test Casescov vt 1-24
Analyze a Stateflow Atomic Subchart 1-26
Analyze an Atomic Subchart by Using Simulink Design Verifier
.. 1-26
Basic Workflow for Simulink Design Verifier 1-29

How the Simulink Design Verifier Software Works

Analyze a Simple Model 2-2

Model BIockS 2-4

vi

Contents

Block Reduction 2-5

Inlined Parameters 2-6
Large Models i, 2-7
Handle Incompatibilities with Automatic Stubbing 2-8
What [s Automatic Stubbing? 2-8
How Automatic Stubbing Works 2-8
Analyze a Model Using Automatic Stubbing 2-10
Analyze Export-Function Models 2-15
Analyze an Export-Function Model with Function-Call
Subsystems 2-15
Limitations 2-20
Nonfinite Data 2-21
Approximations 2-22
Approximations During Model Analysis 2-22
Types of Approximations 2-22
Floating-Point to Rational Number Conversion 2-23
Linearization of Two-Dimensional Lookup Tables for Floating-
Point Data Types 2-23
Approximation of One- and Two-Dimensional Lookup Tables for
Integer and Fixed-Point Data Types 2-24
While LoOpS . .. oo 2-24
Reporting Approximations Through Validation Results 2-26
Impact of Approximations on Objectives Status 2-26
Identify the Effect of Approximations Through Validation Results
.. 2-27
Logic Operations Short-Circuiting 2-31
Model Representation for Analysis 2-32
Reuse Model Representation for Analysis 2-32
Limitations 2-35
Share Simulink Cache File for Faster Analysis 2-36
Store the Simulink Cache File 2-36
Reuse the Simulink Cache File 2-36

Extend Existing Test Cases by Reusing Model Representation

Checking Compatibility with the Simulink Design
Verifier Software

3|

Check Model Compatibility 3-2
Run Compatibility Check 3-2
Compatibility Check Results 3-3

Supported and Unsupported Simulink Blocks in Simulink

Design Verifier 3-7
Support Limitations for Simulink Software Features 3-18
Support Limitations for Model Blocks 3-21
Support Limitations for Stateflow Software Features 3-23

ml Namespace Operator, ml Function, ml Expressions 3-23
CorC++0perators 3-23
CMath Functions, 3-23
Atomic Subcharts That Call Exported Graphical Functions
Outsidea Subchart 3-24
Atomic Subchart Input and Output Mapping 3-24
Recursion and Cyclic Behavior 3-25
Custom C/C++Codecvviii., 3-27
Machine-Parented Data 3-27
Textual Functions with Literal String Arguments 3-27
Support Limitations for MATLAB for Code Generation 3-28
Unsupported MATLAB for Code Generation Features 3-28
Support Limitations for MATLAB for Code Generation Library
Functions 3-28

Support Limitations and Considerations for S-Functions and
C/C++Code 3-32
Enabling S-Functions in Simulink Design Verifier 3-32

viii

Contents

Support Limitations for S-Functions and C/C++ Code 3-32

Considerations for Enabling S-Functions and C/C++ Code in
Simulink Design Verifier 3-33

Source Code Protection 3-34

Working with Block Replacements

4

What Is Block Replacement? 4-2

Block Replacement Effects on Test Generation 4-3
Built-In Block Replacements 4-6
Template for Block Replacement Rules 4-8
Block Replacements for Unsupported Blocks 4-9

Specifying Parameter Configurations

S|

Parameter Constraint Values 5-2
Parameter Configuration for Analysis 5-2
Data Types in Parameter Configurations 5-3
Parameters in Variant Subsystems 5-3

Define Constraint Values for Parameters 5-5
Find Parameters and Autogenerate Constraints 5-6
Edit Parameter Constraints 5-9
Highlight Constrained Parameters in Model 5-10

Specify Parameter Constraint Values for Full Coverage 5-12
About This Example, 5-12
Construct Example Model 5-13
Parameterize Constant Block 5-14
Preload Workspace Variable 5-14
Autogenerate Parameter Constraint 5-15
Analyze Example Model 5-17

Simulate Test Casesc vt 5-19

Store Parameter Constraints in MATLAB Code Files 5-24
Export Parameter Constraintsto File 5-24
Import Parameter Constraints from File 5-26

Define Constraint Values for Parameters in MATLAB Code Files

.. 5-27
Template Parameter Configuration File 5-27
Syntax in Parameter Configuration Files 5-27

Using Command Line Functions to Support Changing
Parameters 5-32
Parameter Identification 5-46
Extend Existing Test Cases After Applying Parameter
Configurations 5-47

Detecting Design Errors

6/

What Is Design Error Detection? 6-2
Derived Ranges in Design Error Detection 6-3
Run a Design Error Detection Analysis 6-4
Workflow for Detecting Design Errors 6-4
Understand the AnalysisResults 6-4
Review the Latest Analysis Results in the Results Summary
Window 6-7
Check For Design Errors using the Model Advisor 6-7
Dead Logic Detection 6-9
Detect Dead LogicOnly 6-9
Detect Dead and Active Logic 6-10
Run a Dead Logic Analysis and Review Results 6-10
Detect Dead Logic Caused by an Incorrect Value 6-14
Analyze the Fuel System Model 6-14

ix

Review the Results and Trace tothe Model 6-15

Investigate the Cause of the Dead Logic 6-16
Update the Input Constraint and Reanalyze the Model 6-16
Model Objects That Receive Dead Logic Detection 6-17
ADS 6-18
Dead Zomne 6-18
Discrete-Time Integrator 6-19
Enabled Subsystem 6-19
Enabled and Triggered Subsystem 6-20
Ben . 6-20
For Iterator, For Iterator Subsystem 6-20
If, If Action Subsystem 6-21
Library-Linked Objects 6-21
Logical Operator 6-21
MATLAB Function i, 6-21
MIinMax . ..ot 6-22
Model ... 6-22
Multiport Switch 6-22
RateLimiter 6-22
Relay o 6-23
Saturation 6-23
Stateflow Charts 6-24
Switch 6-24
SwitchCase, SwitchCase Action Subsystem 6-24
Triggered Models 6-24
Triggered Subsystem 6-25
While Iterator, While Iterator Subsystem 6-25
Detect Integer Overflow and Division-by-Zero Errors 6-26
About ThisExample 6-26
AnalyzetheModel 6-26
Review the AnalysisResults 6-27
Check for Specified Minimum and Maximum Value Violations
.. 6-31
Limitations of Checking Specified Minimum and Maximum Value
Violations 6-31
About ThisExample, 6-32
Create the Example Model 6-32
Analyzethe Model 6-34
Review the AnalysisResults 6-34

X Contents

Detect Out of Bound Array Access Errors 6-38

Design Error Detection for Out of Bound Array Access 6-38
Detect Out of Bound Array Access Example Model 6-39
Limitations of Support for Out of Bound Array Access Design

Error Detection i 6-44

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

.. 6-45
Assumptions and Limitations 6-45

Run Design Error Detection Analysis to Detect Floating-Point
Errors 6-46
Detect Data Store Access Violations 6-51
Detect Data Store Access Violations ina Model 6-51
Filter Objectives by Using Analysis Filter Viewer 6-55
Use the Analysis Filter Viewer to Edit Coverage Filter Files . 6-55
Limitations e 6-58
Design Error Detection 6-60
Design Error Detection for Out of Bound Array Access 6-62
Detect Design Errors in C/C++ Custom Code 6-63
Exclude and Justify Objectives for Design Error Detection .. 6-67
Detect Integer Overflow in a Model with Complex Inputs ... 6-74

Generating Test Cases

7

What Is Test Case Generation? 7-3
Test Case BIOCKSo oo 7-3
Test Case Functions 7-3
Workflow for Test Case Generation 7-5
Generate Test Cases for Model Decision Coverage 7-7
Construct the Example Model 7-7

xi

xii

Contents

Check Compatibility of the Example Model
Configure Test Generation Options
Analyze the Example Model
Review AnalysisResults
Customize Test Generation
Reanalyze the Example Model
Analyze Contradictory Models

Generate Test Cases for a Subsystem

Use Test Generation Advisor to Identify Analyzable
Components it
Test Generation AdviSOr
Test Generation Advisor Requirements
Identify Analyzable Components
Analyze and Generate Tests for Model Components
Manually Select Components for Testing

Generate Test Cases for Embedded Coder Generated Code . .
Generate Test Cases for Generated Code from the Block
Diagramci it e
Generate Test Cases for Generated Code by Using the Simulink
Design Verifier APT
Generate Test Cases for Generated Code from the Simulink Test
Test Managero i

Model Coverage Objectives for Test Generation
DecCiSiono vt
Condition
MCDC ..
Enhanced MCDC e
Relational Boundary

Enhance Model Coverage of Older Release Models
Enhance Model Coverage by Generating Test Cases for Older
Release Model
Enhance Model Coverage by Using Generated Code from Older
Release

Enhanced MCDC Coverage in Simulink Design Verifier
Use Model Coverage Objectives for Enhanced MCDC Coverage

7-10
7-10
7-19
7-21
7-22

7-23
7-25
7-25
7-27
7-27
7-27
7-30
7-32
7-32
7-33
7-33
7-35
7-35
7-35
7-36
7-36
7-36
7-38
7-39
7-43
7-50

7-50

Author Custom Test Objectives for Enhanced MCDC Coverage

.. 7-51
Analyze a Model for Enhanced MCDC Analysis 7-53
Basic Workflow for Enhanced MCDC Analysis 7-57

Configure Advanced Options for Enhanced MCDC Analysis .. 7-59
Author Custom Test Objective Workflow 7-61

Steps for Authoring Custom Test Objectives 7-61

Analyze Custom Test Objectives in a Model for Enhanced MCDC

.. 7-63
Flip Flop Test Generation 7-70
Model Coverage Test Generation 7-71
Test Objective Block 7-72
Test Condition Block 7-73
Cruise Control Test Generation 7-74
Fuel Rate Controller Test Generation 7-76
Extend an Existing Test Suite 7-78
Defining and Extending Existing Tests Cases 7-85
Using Existing Coverage Data During Subsystem Analysis .. 7-93
Creating and Executing Test Cases 7-100
Using Specified Input Minimum and Maximum Values as

Constraints 7-112
Configuring S-Function for Test Case Generation 7-114
Code Coverage Test Generation 7-119

Test Generation on Model with C CallerBlock 7-123

xiii

xiv

Test Generation for Custom Code in a Stateflow Chart 7-125

Extending Existing Test Cases

8

When to Extend Existing TestCases 8-2
Common Workflow for Extending Existing Test Cases 8-3
Considerations for Starting Test Cases 8-3

Extend Test Cases for Model with Temporal Logic 8-14
Create Starting Test Case 8-14
Log Starting Test Casecvvviiinnennn... 8-7
Extend Existing Test Casescovvinn. 8-8
Verify AnalysisResults 8-10
Extend Test Cases for Closed-Loop System 8-12
Log Starting TestCasevviiinnennnn... 8-12
Extend Existing Test Cases, 8-15
Extend Test Cases for Modified Model 8-18
Create Starting TestCases v, 8-18
Extend Existing Test Cases 8-19

Achieving Test Cases for Missing Model Coverage

9

Generate Test Cases for Missing Coverage Data 9-2
Achieve Missing Coverage in Referenced Model 9-3
Programmatically Achieve Missing Coverage in Referenced
Model e 9-3
Increase Coverage for Referenced Models in a Test Harness
... 9-6
Missing Coverage in Subsystems and Model Blocks 9-12

Contents

Achieve Missing Coverage in Closed-Loop Simulation Model

.. 9-13
Record Coverage Data forthe Model 9-13
Find Test Cases for Missing Coverage 9-14
Modified Condition and Decision Coverage in Simulink Design
Verifier 9-17
MCDC Definitions for Simulink Coverage and Simulink Design
Verifler 9-17

Verifying Model Components

10|

What Is Component Verification? 10-2
Component Verification Approaches 10-2
Simulink Design Verifier Tools for Component Verification . . 10-2

Functions for Component Verification 10-4

Verify a Component for Code Generation 10-6
About the Example Model 10-6
Prepare the Component for Verification 10-8
Record Coverage for the Component 10-9
Use Simulink Design Verifier Software to Record Additional

COVETAgE . o v ottt e 10-10
Combine the Harness Models 10-12
Execute the Component in Simulation Mode 10-13

Execute the Component in Software-in-the-Loop (SIL) Mode
... 10-13

Considering Specified Minimum and Maximum Values
for Inputs During Analysis

11|

Minimum and Maximum Input Constraints 11-2
Simulink Design Verifier Support for Specified Input Minimum
and Maximum Values 11-2

Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values 11-3

Specify Input Ranges on Simulink and Stateflow Elements

.. 11-4
Specify Input Ranges for Inport Blocks 11-4
Specify Input Ranges for Simulink.Signal Objects 11-5
Specify Input Ranges for Stateflow Data Objects 11-6
Specify Input Ranges for Subsystems 11-7
Specify Input Ranges for Global Data Stores 11-8
Specify Input Ranges for Bus Elements 11-9

Specify Input Ranges in sldvData Fields 11-11

Proving Properties of a Model

12

What Is Property Proving? 12-2
Proof Blocks 12-2
Proof Functions 12-2

Workflow for Proving Model Properties 12-4

Prove PropertiesinaModel 12-5
About This Example 12-5
Construct Example Model 12-6
Check Compatibility of Example Model 12-7
Instrument Example Model 12-8
Configure Property-Proving Options 12-9
Analyze Example Model 12-10
Review AnalysisResults 12-10
Customize Example Proof 12-19
Reanalyze Example Model 12-20
Review Results of Second Analysis 12-20
Analyze Contradictory Models 12-23
Prove Properties in a Large Model 12-24

Prove System-Level Properties Using Verification Model . . 12-25
When to Use a Verification Model for Property Proving 12-25
About thisExample0..... 12-25

xvi Contents

Understand the Verification Model . . .

Prove the Properties of the Design Model

Fix the Verification Model

Prove Properties in a Subsystem

Model Requirements
Basic Properties
Temporal Properties

Property Proving with an Invalid Property

Property Proving with Multiple Properties

Property Proving with an Assumption Block

Property Proving Workflow for Cruise Control

Property Proving Workflow for Fixed-Point Cruise Control

Property Proving Using MATLAB Function Block

Property Proving Using MATLAB Truth Table Block

Property Proving Workflow for Thrust Reverser

Debounce Temporal Properties

Power Window Controller Temporal Properties

Debug Property Proving Violations by Using Model Slicer .

Design and Verify Properties in a Model

12-25
12-26
12-27
12-30
12-31
12-31
12-33
12-37
12-38
12-39

12-40

12-42

12-44

12-46

12-48

12-50

12-54

12-65

12-73

xvii

xviii

Reviewing the Results

13|

Contents

Highlighted Results on the Model 13-2
Results Review with Model Highlighting 13-2
Simulink Design Verifier Results Inspector 13-2
Highlight Results on Model Automatically 13-2
Green Highlightingon Model 13-4
Red Highlightingon Model 13-5
Orange Highlightingon Model 13-5
Gray Highlightingon Model 13-8

Simulink Design Verifier Data Files 13-10
Data File Generation 13-10
Contents of sldvData Structure 13-10
Model Information FieldsinsldvData 13-11
Simulate Models with Data Files 13-17
Load Results from Data Files 13-17

Simulink Design Verifier Harness Models 13-18
Harness Model Generation 13-18
Create a HarnessModel 13-18
Contents of a HarnessModel 13-19
Configuration of the Harness Model 13-25
Simulate the Harness Model 13-26

Simulate Harness Model with Signal Editor Inputs Block .. 13-29

Export Test Cases to Simulink Test 13-35
Overall Workflow 13-35
Test Case Generation Example 13-35

Simulink Design Verifier Reports 13-38
Simulink Design Verifier Report Generation 13-38
Create AnalysisReports 13-38
FrontMatter 13-39
Summary Chapter 13-39
Analysis Information Chapter 13-40
Derived Ranges Chapter 13-44
Objectives Status Chapters 13-45
Model Items Chapter 13-57
Design Errors Chapter 13-58
Test CasesChapter 13-59

Properties Chapter 0. ... 13-64

Simulink Design Verifier Log Files 13-66
Review AnalysisResults 13-67
View Active Results 13-67
Load Previous Results 13-67
ExploreResults 13-68

Analyzing Large Models and Improving Performance

14

Sources of Model Complexity 14-2
Analyze a Large Model 14-3
Types of Large Model Problems 14-3
Summarize Model Hierarchy and Compatibility 14-4
Use the Default Parameter Values 14-4
Modify the Analysis Parameters 14-6
Use the Large Model Optimization 14-6
Stop the Analysis Before Completion 14-6
Increase Allocated Memory for Analysis Report Generation
.. 14-8
Manage Model Data to Simplify the Analysis 14-9
Simplify Data Typesot 14-9
ConstrainData 14-9
Partition Model Inputs for Incremental Test Generation . . 14-12
Bottom-Up Approach to Model Analysis 14-14
Extract Subsystems for Analysis 14-15
Overview of Subsystem Extraction 14-15
sldvextract Function 14-15
Structure of the Extracted Model 14-16
Analyze Subsystems That Read from Global Data Storage .. 14-16
Analyze Function-Call Subsystems 14-18

xix

XX

Contents

Logical Operations

Models with Large Verification State Space

Countersand Timers

Prove Properties in Large Models
Find Property Violations While Designing Your Model
Combine Proving Properties and Finding Proof Violations . .

14-21
14-22
14-23
14-25

14-25
14-26

Simulink Design Verifier Configuration Parameters

15|

Simulink Design Verifier Options
Options in Configuration Parameters Dialog Box

Design

Verification Options Objects

Command-Line Parameters for Design Verification Options

Design Verifier Pane
Design Verifier Pane Overview

Mode .

Maximum analysis time

Display
Output

unsatisfiable test objectives
foldero i

Make output file names unique by adding a suffix
Check Model Compatibility
Generate Tests/Detect Errors/Prove Properties
Rebuild model representation
Automatic stubbing of unsupported blocks and functions . .
Run additional analysis to reduce instances of rational
approximation
Use specified input minimum and maximum values
Support S-Functions in the analysis
Additional options for S-Functions
Ignore objectives based onfilter
Filterfile

Browse

15-12
15-13
15-13
15-15
15-15
15-16
15-17
15-17
15-18
15-18
15-19

15-19
15-20
15-20
15-21
15-22
15-23
15-23

Design Verifier Pane: Block Replacements
Block Replacements Pane Overview
Apply block replacements,
List of block replacementrules
File path of the output model

Design Verifier Pane: Parameters
Parameters Pane Overview
Enable parameter configuration
Use parametertable
Parameter configurationfile

Clear o

USE o oo e
Name e

Value . ..o

MaX . e

Design Verifier Pane: Test Generation
Test Generation Pane Overview
Test generationtarget
Model coverage objectives
Testconditions,
Testobjectives
Maximum testcasesteps,
Test suite optimization
Include relational boundary objectives
Floating point absolute tolerance
Floating point relative tolerance
Use strict propagation conditions
Extend existing testcases
Datafile e

xxii

Contents

Ignore objectives satisfied in existing coverage data
Coveragedatafile
Browse...

Design Verifier Pane: Design Error Detection
Design Error Detection Pane Overview
Deadlogic0
Identify active logic
Out of bound array accesscivuu...
Divisionby zero
Integeroverflow
Non-finite and NaN floating-point values
Subnormal floating-point values
Specified minimum and maximum value violations
Data store access violations

Design Verifier Pane: Property Proving
Property Proving Pane Overview
Assertionblocks
Proof assumptions
Strategy . ..o
Maximum violation steps

Design Verifier Pane: Results
Results Pane Overview,
Savetestdatatofile
Datafilename
Include expected outputvalues
Randomize data that do not affect the outcome
Generate separate harness model after analysis
Harness model filename
Reference input model in generated harness
Harness sourceu ..
TestFile Name
Test Harness Name it

Design Verifier Pane: Report
Report Pane Overview
Generate report of theresults
Generate additional report in PDF format
Reportfilename
Include screen shots of properties
Display reportot

Verification and Validation

16|

Test Model Against Requirements and Report Results 16-2
Requirements - Test Traceability Overview 16-2
Display the Requirements 16-3
Link RequirementstoTests 16-4
RuntheTest i, 16-5
ReporttheResults 16-6

Analyze a Model for Standards Compliance and Design Errors

.. 16-8
Standards and Analysis Overview 16-8
Check Model for Style Guideline Violations and Design Errors

.. 16-8

Perform Functional Testing and Analyze Test Coverage . . . 16-11

Incrementally Increase Test Coverage Using Test Case
Generation e 16-11

Analyze Code and Test Software-in-the-Loop 16-14
Code Analysis and Testing Software-in-the-Loop Overview . 16-14
Analyze Code for Defects, Metrics, and MISRA C:2012 16-14

Glossary

xxiii

Acknowledgments

The Simulink Design Verifier software uses Prover Plug-In® products from Prover®
Technology to generate test cases and prove model properties.

(=) civgged i

Getting Started

* “Simulink Design Verifier Product Description” on page 1-2
* “Simulink Design Verifier Block Library” on page 1-3

* “Analyze a Model” on page 1-4

* “Analyze a Stateflow Atomic Subchart” on page 1-26

» “Basic Workflow for Simulink Design Verifier” on page 1-29

1 Getting Started

Simulink Design Verifier Product Description

1-2

Identify design errors, prove requirements compliance, and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models.
It detects blocks in the model that result in integer overflow, dead logic, array access
violations, and division by zero. It can formally verify that the design meets functional
requirements. For each design error or requirements violation, it generates a simulation
test case for debugging.

Simulink Design Verifier generates test cases for model coverage and custom objectives
to extend existing requirements-based test cases. These test cases drive your model to
satisfy condition, decision, modified condition/decision (MCDC), and custom coverage
objectives. In addition to coverage objectives, you can specify custom test objectives to
automatically generate requirements-based test cases.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Simulink Design Verifier Block Library

Simulink Design Verifier Block Library

To open the Simulink Design Verifier block library, at the MATLAB® command prompt,
type sldvlib.

©-© =V

Objectives and Constraints \erification Utilities
e
1 Example
xxxxxxxxxxxxxxxxxxxxxx - Froperties

Temporal Operators

The Simulink Design Verifier block library has three categories of blocks:

* Objectives and Constraints — Blocks that define custom objectives and constraints
* Temporal Operators — Blocks that define temporal properties on Boolean signals
» Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of how
to specify common properties in your model. You can easily adapt these examples for use
in your models.

1-3

1 Getting Started

Analyze a Model

1-4

In this section...

“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-6
“Combine Test Cases” on page 1-24

About This Example

The following sections describe an example model, Cruise Control Test Generation. This
example illustrates how to use Simulink Design Verifier to generate test cases that
achieve complete model coverage. Through this example, you learn how to analyze
models with Simulink Design Verifier and interpret the results.

Open the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo cruise control

matlab:sldvdemo_cruise_control

Analyze a Model

Simulink Design Verifier
Cruise Control Test Generation

1} = enable
enable
.2} brake throt 1)
brake throt
3} et

set [0 100]

Actual speed

@7 —|speed
speed
.4} inc target —Il-

inc target
5 } | dec

dec

Controller

Run
{double-click)

Run Simulink Design Verifier

This example shows howto generate test cases that achieve complate model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One ofthe test objectives forces the discrete integrator
inthe Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500,
The constraint on speed limits the values in test cases between 0 and 100, This

forces the test casesto take several samples to exceed the integrator limit.
A AN N NNLA—I——

Togole Speed
Constraint
{tdouble-click)

View Options
{double-click)

Togaole Constraint View Simulin k Design Verifier Options

1-5

1 Getting Started

1-6

Generate Test Cases

“Run Analysis” on page 1-6

“Generate Analysis Results” on page 1-8

“Highlight Analysis Results on Model” on page 1-9

“Generate Detailed Analysis Report” on page 1-12

“Create Harness Model” on page 1-19

“Simulate Tests and Produce Model Coverage Report” on page 1-23

Run Analysis

To generate test cases for the Cruise Control Test Generation model, open the model
window and double-click the block labeled Run.

Simulink Design Verifier begins analyzing the model to generate test cases, and the
Simulink Design Verifier Results Summary window opens. The Results Summary window
displays a running log showing the progress of the analysis.

Analyze a Model

E nulink Design Verifier Results Summarny: sldvdemo_cruise_con oy

Progress |

Objectives processed 22/32
Satisfied 22
Unsatisfiable 1]
Elapsed time 0:13

13-Jul-2017 17:11:10

Checking compatibility for test generation: model
'sldvdemno_cruise_control'

Compiling model...done

Checking compatibility...done

13-Jul-2017 17:11:11
'sldvdemo_cruise_control' is compatible for test generation

with Simulink Design Verifier.

Generating tests using compatibility results from 13-Jul-2017
17:11:11...

SATISFIED hd

Disable Highlighting Stop

If you need to terminate an analysis while it is running, click Stop. The software asks if
you want to produce results. If you click Yes, the software creates a data file based on the
results achieved so far. The path name of the data file appears in the Results Summary

window.

The data file is a MAT-file that contains a structure named sldvData. This structure
stores the data that the software gathers and produces during the analysis.

1-7

1 Getting Started

For more information, see “Simulink Design Verifier Data Files” on page 13-10.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the sldvdemo cruise control
model, the Results Summary window displays several options:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Note When you analyze other models, depending on the results of the analysis, you may
see a subset of these four options.

1-8

Analyze a Model

Simulink Design Verifier Results Surmmary: sldvdemo_cruise_con..

Progress |

Objectives processed 32/32

Satisfied 32
Unsatisfiable 0
Elapsed time 0:17

Test generation completed normally.
32/32 objectives are satisfied.

Results:

* Highlight analysis results on model

= View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘\sldvdemo_cruise control

View Log Close

The sections that follow describe these options in detail.

Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight analysis
results on model, the software highlights objects in the model in three different colors,

depending on the analysis results:

1-9

1 Getting Started

1-10

* “Green: Objectives Satisfied” on page 1-10
* “Orange: Objectives Undecided” on page 1-11
* “Red: Objectives Unsatisfiable” on page 1-11

When you highlight the analysis results on a model, the Simulink Design Verifier Results
Inspector opens. When you click an object in the model that has analysis results, the
Results Inspector displays the results summary for that object.

Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for
that block. If the block is a subsystem or Stateflow® atomic subchart, the green outline
indicates that the analysis generated test cases for all objectives associated with the child
objects.

For example, in the sldvdemo cruise control model, the green outline shows that
the PI controller subsystem satisfied all test objectives. The Results Inspector lists the two
satisfied test objectives for the PI controller subsystem.

v

Il
—® error throt——

Pl Controller
'D'} Results: sldvdemo_cruise_control — O)4
~ A
Back to summary

sldvdemo_cruise_control/Controllerf/PI Controller

enable logical value F SATISFIED - View test case
enable logical value T SATISFIED - View test case

Analyze a Model

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was
satisfiable or not. This situation might occur when:

* The analysis times out

* The software satisfies test objectives without generating test cases due to:

* Automatic stubbing errors
* Limitations of the analysis engine

In the following example, the analysis timed out before it could determine if one of the
objectives for the Discrete-Time Integrator block was satisfiable.

i

'PE Simulink Design Verifier Results Inspector EI@

#at - &2

Back to summary - Close results

sldvdemo_cruise_control/ Controller/PI Controller/Discrete-
Time Integrator

integration result <= lower limit F SATISFIED - View test case
integration result <= lower limit T

integration result == upper limit F SATISFIED - View test case
integration result == upper limit T SATISFIED - View test case

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not
generate test cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so the
Switch block never passes through the value of input 3.

1-11

1 Getting Started

v

—
Y
L

v

—»—
Switch

P)

P& Simulink Design Verifier Results Inspector EI@
a4 ~ B

Back to summary - Close results
sldvdemo_cruise_control_red_switch /Controller/Switch
logical trigger input false (outputis UNSATISFIABLE
from 3rd input port)

logical trigger input true (outputis SATISFIED - View test case
from 1st input port)

Generate Detailed Analysis Report

In the Simulink Design Verifier Results Summary window, if you click Generate detailed
analysis report, the software saves and then opens a detailed report of the analysis. The
path to the report is:

<current folder>/sldv_output/...
sldvdemo cruise control/sldvdemo cruise control report.html

The HTML report includes the following chapters.

1-12

Analyze a Model

Table of Contents

1. Summary

2. Analysis Information

. Test Objectives Status
. Model Items

. Test Cases

L | [

For a description of each report chapter, see:

* “Summary” on page 1-13

* “Analysis Information” on page 1-14

* “Test Objectives Status” on page 1-15
* “Model Items” on page 1-17

* “Test Cases” on page 1-18

Summary

In the Table of Contents, click Summary to display the Summary chapter, which
includes the following information:

* Name of the model

* Mode of the analysis (test generation, property proving, design error detection)
» Status of the analysis

* Length of the analysis in seconds

* Number of objectives satisfied

1-13

1 Getting Started

Chapter 1. Summary

Analysis Information

Model: sldvdemo_cruise control
Mode: TestGeneration

Status: Completed normally
Analysis Time: 7s

Objectives Status

Number of Objectives: 34
Objectives Satisfied: 34

Analysis Information

In the Table of Contents, click Analysis Information to display information about the
analyzed model and the analysis options.

1-14

Analyze a Model

Chapter 2. Analysis Information

Table of Contents

Model Information
Analysis Options
Constraints
Approximations

Model Information

File:
Version:
Time Stamp:
Author:

Analysis Options

Mode:

Test Suite Optimization:
Maximum Testcase Steps:
Test Conditions:

Test Objectives:

Model Coverage Objectives:

Maximum Analysis Time:
Block Replacement:
Parameters Analysis:

Parameters Configuration File:

Save Data:
Save Harness:
Save Report:

Test Objectives Status

sldvdemo_cruise control
1.56

Wed Jul 18 10:45:08 2012
The MathWorks Inc.

TestGeneration
CombinedObjectives
500 time steps
UseLocalSettings
UseLocalSettings
MCDC

60s

off

on
sldv_params_template.m
on

off

off

In the Table of Contents, click Test Objectives Status to display a table of satisfied
objectives. The following figure shows a partial list of the objectives satisfied in the Cruise
Control Test Generation model.

1-15

1 Getting Started

Chapter 3. Test Objectives Status
Table of Contents

Obijectives Satisfied

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

Type Model Item Description Test Case
1 Decision Controller/Switch3 1og1ca] trigger input false (output is from 3rd 3
input port)
2 Decision Controller/Switch3 1oglca] trigger input true (output is from 1st 4
-— input port)
3 Decision Controller/Switch2 10g1ca] trigger input false (output is from 3rd 1
input port)
4 Decision Controller/Switch2 10g1ca] trigger input true (output is from 1st 8
input port)
5 Decision Controller/Switch1 1ogjca] trigger input false (output is from 3rd 5
input port)
6 Decision Controller/Switch1 1ogjca] trigger input true (output is from 1st 8
input port)
7 Condition Controller/Logical Operatorl Logic: input port 1 T 3
8 Condition Controller/Logical Operatorl Logic: input port 1 F 8
9 Condition Controller/Logical Operator2 Logic: input port 1 T 8
10 Condition Controller/Logical Operator2 Logic: input port 1 F 5
11 Condition Controller/Logical Operator2 Logic: input port 2 T 6
12 Condition Controller/Logical Operator2 Logic: input port 2 F 5
13 MCDC Controller/Logical Operator2 ESI%CI: ?ICDC expression for output with input 8

The Objectives Satisfied table lists the following information for the model:

* # — Objective number
* Type — Objective type

* Model Item — Element in the model for which the objective was tested. Click this link
to display the model with this element highlighted.

* Description — Description of the objective
+ Test Case — Test case that achieves the objective. Click this link for more information
about that test case.

In the row for objective 34, click the test case number (7) to display more information
about Test Case 7 in the report's Test Cases chapter.

1-16

Analyze a Model

Test Case 7

Summary

Length: 0.06 second (7 sample periods)
Objectives

Satisfied:

Objectives

Step |Time Model Item
7 0.06 Controller/PT Controller/Discrete-Time Integrator

Generated Input Data

. 0.01-
Time |0 0.05 0.06
Step |1 2-6 7
enable |1 1 1
brake |0 0 0
set 1 0 1
ine 1 1 -
dec 0 0 -
speed |97 0 0

Objectives
integration result >= upper limit T

In this example, Test Case 7 satisfies one objective, that the integration result be greater
than or equal to the upper limit T in the Discrete-Time Integrator block. The table lists the
values of the six signals from time 0 through time 0.06.

Model Items

In the Table of Contents, click Model Items to see detailed information about each item
in the model that defines coverage objectives. This table includes the status of the
objective at the end of the analysis. Click the links in the table for detailed information

about the satisfied objectives.

1-17

1 Getting Started

Chapter 4. Model Items

Table of Contents

Controller/Switch3

Controller/Switch2

Controller/Switchl

Controller/Logical Operatorl

Controller/Logical Operator2

Controller/Logical Operator

Controller/PI Controller

Controller/PI Controller/Discrete-Time Integrator

This section presents, for each object in the model defining coverage objectives, the list of objectives and their individual status at the end of the analysis. It
should match the coverage report obtained from running the generated test suite on the model, either from the harness model or by using the sldvruntests
command.

Controller/Switch3
View
s Test
H Type Description Status Case
logical trigger input
1 Decision false (output is from |Satisfied §
3rd input port)
logical trigger input true
2 Decision (output is from 1st Satisfied 4
input port)
Controller/Switch2
View
- Test
H Type Description Status Case
logical trigger input
3 Decision false (output is from Satisfied 1
3rd input port)
logical trigger input true
4 Decision (output is from 1st Satisfied §
input port)
Test Cases

In the Table of Contents, click Test Cases to display detailed information about each
generated test case, including:

* Length of time to execute the test case

* Number of objectives satisfied

» Detailed information about the satisfied objectives
* Input data

For an example, see the section for Test Case 7 in “Test Objectives Status” on page 1-15.

1-18

Analyze a Model

Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create harness
model, the software creates and opens a harness model named
sldvdemo cruise control harness.

Test Case 1 enzble

g

Inputs

ooC

Test Case Explanation

The harness model contains the following blocks:

Size Type
enzble
braks
s=t
i
dec

» iy

throt

target
target

Test Unit {copied from sldvdeme_ocruise_control)

* The Test Case Explanation block is a DocBlock block that documents the generated
test cases. Double-click the Test Case Explanation block to view a description of each

test case for the objectives that the test case satisfies.

1-19

1 Getting Started

F Editor - S\sca_sldvisldvdemeo_cruise_control_harness_testcases.txt

ds (g g Wk msert . fx [v <@

New Open Save |1zl Compare = Comment . = EHGDTDV Breakpoints

- = - é?rim - Indent - | &f |55 4 Find ~ -

FILE EDIT NAVIGATE BREAKFOINTS

[sldvdemo_crui;e_control_harne;;_te;tc..‘ S

1 Te=st Case 1 (1 Cbkbjectiwves) -~
2 Parameter values: F
2

4 1. Controller/Switch2 - logical trigger input false (output is from 3rd input port) @ T=0.00

5

& Test Case 2 (3 Cbjectiwves)

7 Parameter values:

8

9 1. Controller/Logical Operator - Logic: input port 1 F @ T=0.00
10 2. Controller/Logical Operator - Logic: MCDC expression for output withl input port 1 F @ T=0.00
11 3. Controller/PI Controller - enable logical valus F § T=0.00
12
13 TIest Case 3 (3 Cbjectives)
14 Parameter values:
15 |
16 1. Controller/Logical Cperatorl - Logic: input port 1 T @ T=0.00 3
17 2. Controller/Logical Operator - Logic: input port 2 F @ T=0.00
18 3. Controller/Logical Operator - Logic: MCDC expression for output withl input port 2 F @ T=0.00
19
20 Test Case 4 (1 Cbjectives)
21 Parameter wvalues:
22
23 1. Controller/Switch3 - logical trigger input true (output is from 1st input port) & T=0.00
24
25 Test Case 5 (7 Objectives)
26 Parameter values:
27

=] 1. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.00
23 2. Controller/Logical Operator2 - Logic: input port 1 F @ T=0.00 B
30 3. Controller/Logical Operator2 - Logic: input port 2 F @ T=0.00
=hl 4. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 1 F @ T=0.00
32 5. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.00
33 6. Controller/Logical Operator - Logic: input port 3 F @ T=0.00
34 7. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 F @ T=0.00
5
36 TIest Case 6 (2 Cbjectives)
37 Parameter values:
38
39 1. Controller/Logical Cperator2 - Logic: input port 2 T @ T=0.01
40 2. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 T @ T=0.01
41
42 Test Case 7 (1 Cbjectiwves)
43 Parameter values:
aa a2
Click and drag to move the document bar... Ln 25 Col 27 OVR

1-20

Analyze a Model

» The Test Unit block is a Subsystem block that contains a copy of the original model
that the software analyzed. Double-click the Test Unit block to view its contents and
confirm that it is a copy of the Cruise Control Test Generation model.

Note You can configure the harness model to reference the model that you are
analyzing using a Model block instead of using a subsystem. In the Configuration
Parameters dialog box, on the Design Verifier > Results pane, select Generate
separate harness model after analysis and Reference input model in generated
harness.

* The Inputs block is a Signal Builder block that contains the generated test case
signals. Double-click the Inputs block to open the Signal Builder dialog box and view
the eight test case signals.

* The Size-Type block is a subsystem that transmits signals from the Inputs block to the
Test Unit block. This block verifies that the size and data type of the signals are
consistent with the Test Unit block.

The Signal Builder dialog box contains eight test cases.
1 To view Test Case 7, from the Active Group list, select Test Case 7.
In Test Case 7 at 0.01 seconds:

* The enable and inc signals remain 1.

* The brake and dec signals remain 0.

* The set signal transitions from 1 to 0.

* The speed signal transitions from 100 to 0.

1-21

1 Getting Started

u Signal Builder (sldvdemo_cruise_contrel_harness/Inputs) *

File Edit Group Signal Help E
FEH {RE oo | T |EFRER » 0o | R E
Active Group; | Test Case 7 - @, E] E]
e VTTTTTTTTTTTT Coo Tt e TTTTTTTTTTTTTTT LTt e y
enable H : : | I . o
! i ! ! : ! i 1
| | | | | |
|?_"'"""'"'"."'""""""i"""'""'"'.'"'""""'"'."""'""""i"'""""""."""""""".
ot | | | | | |
1 i i i | i i |
............... L S ——
IS A A N AR O 4
b a a e .]
n s s s s ;
e frenrnnnnnes oo beoneenenens onmenennenes et EESESEE :
Ei‘:::::::::::::*':::::::::::::::i:::::::::::::::'*::::::::::::::i:::::::::::::::i:::::::::::::: _______________ I
Ui_ E E E : E E :
_ | i i | i i |
mfi o B Rl LR, EEEEEEEE LR L EEEEEl EEEEEEEEEEEEEEE.
ag ' ' ' 1 1 1
R oo eenenennnes eenneneinane s eenneneennn :
b a a : a : |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.0
Time (sec)
Lett Pormnt Right Paimt

brake {shown)

Name: enable T: set (shown)

= ine {shown)

Index: 1 - - dec {shown)
’ speed {shown) i

Click to select point or segment, Shift+click to add points

enable (#1}) [YMin ¥Max]

1-22

In the Signal Builder block, the signal group satisfies the test objectives described in
the Test Case Explanation block.

Analyze a Model

To confirm that Simulink Design Verifier achieved complete model coverage, simulate
the harness model using all the test cases. In the Signal Builder dialog box, click the

all
Run all and produce coverage button ﬂ

The Simulink software simulates all the test cases. The Simulink Coverage™ software
collects coverage data for the harness model and displays a coverage report. The
report summary shows that the sldvdemo cruise control harness model
achieves 100% coverage.

Summary

1. sldvdemo cruise control harness 8 100%

Model Hierarchy/Complexity:

.. Controller 7 100%
..... PI Controller 4 100%

D1
—
2 Test Unit (copied from sldvdemo cruise_control) 7 100% e 100% ——100% —-—
—
—

Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate tests and
produce a model coverage report, the software simulates the model and produces a
coverage report for the sldvdemo cruise control model. The software stores the
report with the following name:

<current_folder>/sldv_output/sldvdemo_cruise_control/...

sldvdemo _cruise control report.html

When you click Run all and produce coverage to simulate tests in the harness model,
you may see the following differences between this coverage report and the report you
generated for the model itself:

The harness model coverage report might contain additional time steps. When you
collect coverage for the harness model, the model stop time equals the stop time for
the longest test case. As a result, you might achieve additional coverage when you
simulate the shorter test cases.

1-23

1 Getting Started

1-24

* The cyclomatic complexity coverage for the Test Unit subsystem in the harness model
might be different than the coverage for the model itself due to the structure of the
harness model.

Combine Test Cases

If you prefer to review results that are combined into a smaller number of test cases, set
the Test suite optimization parameter to LongTestcases. When you use the
LongTestcases optimization, the analysis generates fewer, but longer, test cases that
each satisfy multiple test objectives. This optimization creates a more efficient analysis
and results that are easier to review.

Open the sldvdemo cruise control model and rerun the analysis with the
LongTestcases optimization:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings.

2 In the Configuration Parameters dialog box, in the Select tree on the left side, under
the Design Verifier category, select Test Generation.

Set the Test suite optimization parameter to LongTestcases.
Click Apply and OK to close the Configuration Parameters dialog box.
In the sldvdemo cruise control model, double-click the block labeled Run.

an AW

In the Results Summary window, click Create harness model.

In the harness model, the Signal Builder block and the Test Case Explanation block
now contain one longer test case instead of the eight shorter test cases created
earlier in “Generate Test Cases” on page 1-6.

Analyze a Model

F Editor - S\sca_sldvisldvdemo_cruise_control_harness_testcase_long.tet

EDTOR cossickearal (A 5] & & 0 0 o

':D:' = E [l Find Files mset L & [5] ~ |52 g
Mew Open Save (5 Come=re = || Camment & L ENGDTD' Breakpoints
- = - EPrim - Indent - | i |f 4 Find = -
FILE EDIT NAVIGATE BREAKFOINTS
[;Idvdemn_crui;e_(nntrnl_hame;;_te:tc... S
1 Te=st Case 1 (34 Cbjectives)
2 Parameter values:
3
4 1. Controller/Switch3 - logical trigger input false (output is from 3rd input port) @ T=0.00
5 2. Controller/Switch3 - logical trigger input true (output is from 1lst input port) @ T=0.02
[3. Controller/Switch2 - logical trigger input false (output iz from 3rd input port) @ T=0.03
7 4. Controller/Switch? - logical trigger input true (output is from 1st input port) @ T=0.00
8 5. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.04
9 6. Controller/Switchl - logical trigger input true (output is from lst input port) @ T=0.00
10 7. Controller/Logical Operatorl - Logic: input port 1 T @ T=0.02
11 8. Controller/Logical Cperatorl - Logic: input port 1 F @ T=0.00
2 9. Controller/Logical Operator2 - Logic: imput port 1 T @ T=0.00
13 10. Controller/Logical Cperator2 - Logic: input port 1 F @ T=0.04
14 11. Controller/Logical Cperator? - Logic: input port 2 T @ T=0.07
15 12. Controller/Logical Cperator? - Logic: input port 2 F @ T=0.04
16 13. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 1 T @ T=0.00
17 14. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 2 T @ T=0.07
18 15. Controller/Logical Operator? - Logic: MCDC expression for output with input port 1 F @ T=0.04
1% 16. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.04
2 17. Controller/Logical Cperator - Logic: input port 1 T 8 T=0.00
21 18. Controller/Logical Operator - Logic: input port 1 F @ T=0.01
22 18. Controller/Logical Operator - Logic: input port 2 T @ T=0.00
23 20. Controller/Logical Cperator - Logic: input port 2 F § T=0.02
24 21. Controller/Logical Operator - Logic: input port 3 T @ T=0.00
25 22. Controller/Logical Operator - Logic: input port 3 F @ T=0.05
26 23. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 T @ T=0.00
27 24. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 T @ T=0.00
28 25. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 T @ T=0.00
29 26. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 F @ T=0.01
30 27. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 F @ T=0.02
31 28. Controller/Logical Cperator - Logic: MCDC expression for output with input port 3 F @ T=0.05
2 28. Controller/PI Controller - enable logical walue F @ T=0.01
33 30. Controller/PI Controller - enable logical value T @ T=0.00
34 31. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit F @ T=0.00
35 32. Controller/PI Controller/Discrete-Time Integrator - integration resmlt <= lower limit T @ T=0.14
36 33. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limitc F @ T=0.00
37 34. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limit T @ T=0.26
plain text file Ln Col 1 OVR

The analysis still satisfies all 34 objectives.

Click Run all and produce coverage to collect coverage.

1-25

1 Getting Started

Analyze a Stateflow Atomic Subchart

1-26

In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the
same state or subchart across multiple charts and models. You can use Simulink Design
Verifier to analyze atomic subcharts individually. You do not have to analyze the chart that
contains the atomic subchart, or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in a
controlled environment is helpful. As described in “Bottom-Up Approach to Model
Analysis” on page 14-14, by analyzing atomic subcharts or other components in the
model hierarchy individually, you can analyze a model to:

* Solve problems that slow down or prevent test generation, property proving, or design
error detection.

* Analyze model components that are unreachable in the context of the container model
or chart.

Note For more information about atomic subcharts, see “Create Reusable
Subcomponents by Using Atomic Subcharts” (Stateflow).

Analyze an Atomic Subchart by Using Simulink Design Verifier

The sf_atomic_sensor pair example model models a redundant sensor pair using
atomic subcharts. This example analyzes the Sensorl subchart in the
RedundantSensors chart.

1 Openthe sf atomic sensor pair example model:
sf atomic _sensor pair

This model demonstrates how to model a simple redundant sensor pair using atomic
subcharts.

2 Double-click the RedundantSensors chart to open it.

matlab:sf_atomic_sensor_pair

Analyze a Stateflow Atomic Subchart

ink Sensori

[Sensorl.inFailed()]

ink Sensor?

[SensorZ.inF ailed()]
O

Alarm
en, du: y =0;

This Stateflow chart has two atomic subcharts:

e Sensorl
e Sensor?2

To analyze the Sensorl subchart using Simulink Design Verifier, right-click the
subchart and select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1 that
contains the Sensorl subchart. The new model contains Inport and Outport blocks
that respectively correspond to the data objects u and y in the subchart.

1» | Il Ot 1 1)

Sensor

1-27

1 Getting Started

The software saves the new model and other files generated by the analysis in:

<current folder>/sldv_output/Sensorl
4 When the analysis is complete, view the analysis results for the Sensorl subchart by
clicking one of the following options:
+ Highlight analysis results on model
* Generate detailed analysis report
* Create harness model
* Simulate tests and produce a model coverage report

1-28

Basic Workflow for Simulink Design Verifier

Basic Workflow for Simulink Design Verifier

The basic workflow for analyzing your model is described in the following steps, with links

to related documentation.

Step |Action See...

1 Check the compatibility of your model. “Check Model Compatibility” on page 3-2

2 If you want to work around compatibility |¢ “What Is Block Replacement?” on page 4-
limitations in your model or customize 2
model elements for analysis, you can use |, “Parameter Constraint Values” on page 5-
Simulink Design Verifier block 2
replacement rules. If you want to generate
additional values for parameters in your
model during analysis, use Simulink
Design Verifier parameter configurations.

3 Set Simulink Design Verifier options. “Simulink Design Verifier Options” on page 15-

2

4 If you plan to generate test cases or prove |¢ “What Is Design Error Detection?” on page
properties in your model, first run design 6-2
error detection for integer overflow and |, “petect Integer Overflow and Division-by-
division by zero. Zero Errors” on page 6-26

5 Analyze your model to: * “Run a Design Error Detection Analysis” on

* Detect design errors
* Generate test cases
* Prove properties

page 6-4

* “Workflow for Test Case Generation” on
page 7-5

* “Workflow for Proving Model Properties”
on page 12-4

Generate the results.

“Generate Analysis Results” on page 1-8

Interpret the results.

“Results Interpretation and Use”

1-29

1 Getting Started

See Also

More About

. Systematic Model Verification using Simulink Design Verifier
. “Analyze a Model” on page 1-4

1-30

How the Simulink Design Verifier
Software Works

* “Analyze a Simple Model” on page 2-2

* “Model Blocks” on page 2-4

* “Block Reduction” on page 2-5

* “Inlined Parameters” on page 2-6

* “Large Models” on page 2-7

+ “Handle Incompatibilities with Automatic Stubbing” on page 2-8

* “Analyze Export-Function Models” on page 2-15

* “Nonfinite Data” on page 2-21

* “Approximations” on page 2-22

* “Reporting Approximations Through Validation Results” on page 2-26
* “Logic Operations Short-Circuiting” on page 2-31

* “Model Representation for Analysis” on page 2-32

* “Share Simulink Cache File for Faster Analysis” on page 2-36

+ “Extend Existing Test Cases by Reusing Model Representation” on page 2-39
* “Configure Model Representation Options” on page 2-45

2 How the Simulink Design Verifier Software Works

Analyze a Simple Model

AND ..@

Yy

Logical out
L1 3} = Oper ator 1
HOR >
in L v l—_l
Logical Memory
Dperator

This simple model includes two Logical Operator blocks and a Memory block. The
persistent information in this model is limited to the Boolean value of the Memory block.
The input to the model is a single Boolean value. The following table describes the
complete behavior of the model, including the behavior that results from an arbitrarily
long sequence of inputs.

|Input Memory Value |Output of XOR Block = |Output of AND Block
Next Memory Value

1 false false false false

2 true false true false

3 false true true false

4 true true false true

The test objective is to generate test cases that result in a true output. A true output
results when the input is true, and the output of the Memory block is true. Test case
generation follows a path to reach this condition, which depends on the initial model
conditions:

» If the initial memory value is true, the test case is a single time step where the input
is true.
+ If the initial memory value is false, the test case is two time steps:
1 The input value is true and the memory value is false (row 2). Thus, the output of
the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is
true, and the analysis achieves the test objective.

2-2

Analyze a Simple Model

An infinite number of test cases can cause the output to be true, and regardless of the
state value, the output can be held false for an arbitrary time before making it true. When
Simulink Design Verifier searches, it returns the first test case it encounters that satisfies
the objective. This case is invariably the simulation with the fewest time steps. Sometimes
you may find this result undesirable because it is unrealistic or does not satisfy some
other test requirement.

The same basic principles from this example apply to property proving and test case
generation. During test case generation, option parameters explicitly specify the search
criteria. For example, you can specify that Simulink Design Verifier find paths for all block
outputs or find only those paths that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property, that
you want Simulink Design Verifier to prove, for example, that the output is always true. If
the search completes without finding a path that violates the property, the property is
proven. If the software finds a path where the output is false, it creates a counterexample
that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where
data overflow or division-by-zero errors can and cannot occur. The analysis creates test
cases that demonstrate how the errors can occur.

2-3

2 How the Simulink Design Verifier Software Works

Model Blocks

2-4

If your model contains Model blocks that reference external models, test creation occurs
for the top-level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test
objectives for each instance of the referenced model in its individual context in the top-
level model. If you have three Model blocks that reference a certain model, the analysis
produces results for all three instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects
the multiple instances of the same referenced model. The simulation produces one set of
coverage results for each referenced model; if you have three Model blocks that reference
a certain model, the simulation produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same
model. The referenced model has three test objectives. Analyzing the top-level model
produces nine test objectives. If you simulate the model with the nine test cases, the
coverage results for that referenced model specify three test objectives.

Block Reduction

Block Reduction

Block reduction achieves faster execution during model simulation and in generated code.
When block reduction is enabled, certain block groups can be collapsed into a single
block, or even removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in
unused code paths are eliminated from the model. Simulink Design Verifier results do not
include test objectives for blocks that have been reduced.

Consider the Switch block in the following model.

In1 4\
; | D

|l
Ot

Cor—

Switch

For this Switch block, the control input is always 0. If the Criteria for passing first
input block parameter is u2 ~= 0, the Switch block always passes the third input
through to the output port. When you analyze this model, Simulink Design Verifier
removes the Switch block from the model and does not report any test objectives for the
Switch block.

For more information about block reduction, see the description of the “Block reduction”
(Simulink) parameter.

2-5

2 How the Simulink Design Verifier Software Works

Inlined Parameters

2-6

Setting Default parameter behavior to Inlined on the Optimization pane of the
Configuration Parameters dialog box optimizes Simulink models by transforming tunable
parameters into constant values. For example, suppose that you have a Gain block whose
Gain parameter is a, where a is defined in the model workspace. During code generation,
Simulink converts that Gain parameter to a constant value, as defined in the workspace.

When Simulink Design Verifier translates a model, it transforms all tunable parameters in
the model into constant values, even if you set Default parameter behavior to
Inlined.

To tune parameters for an analysis, define parameter values in a parameter configuration
file and specify that file in the Configuration Parameters > Design Verifier >
Parameters pane to apply those parameter values during the analysis. For example, to
constrain the values of a Gain parameter a to integer values from 4 to 10, in the
parameter configuration file, specify the following:

params.a = int8([4 10]);
The analysis generates the specified values and returns results for those values.

For detailed information about how to specify parameters during a Simulink Design
Verifier analysis, see “Define Constraint Values for Parameters” on page 5-5.

Large Models

Large Models

In larger, more complicated models, Simulink Design Verifier uses mathematical
techniques to simplify the analysis:

+ It identifies portions of the model that do not affect the desired objectives.
» It discovers relationships within the model that reduce the complexity of the search.
* It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe
your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on
page 14-3.

2-7

2 How the Simulink Design Verifier Software Works

Handle Incompatibilities with Automatic Stubbing

2-8

In this section...

“What Is Automatic Stubbing?” on page 2-8
“How Automatic Stubbing Works” on page 2-8

“Analyze a Model Using Automatic Stubbing” on page 2-10

What Is Automatic Stubbing?

Automatic stubbing lets you analyze a model that contains objects that Simulink Design
Verifier does not support.

When you enable the automatic stubbing option (it is enabled by default), the software
considers only the interface of the unsupported objects, not their actual behavior. This
technique allows the software to complete the analysis. However, the analysis may
achieve only partial results if any unsupported model element affects the simulation
outcome.

How Automatic Stubbing Works

If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to an
unsupported block, the software “stubs” that block. The analysis ignores the behavior of
the block, and as a result, the block output can take any value.

Stub Trigonometric Function Block

Simulink Design Verifier does not support Trigonometric Function blocks when the
Function parameter is set to acos, such as the one in the following graphic.

]

BCO5 Soope

h

L1 3} | 3oos

n_signal out_signal
Iml

When stubbing this block during analysis, out signal can take any value, with the
following results.

Handle Incompatibilities with Automatic Stubbing

Analysis Model Result of Stubbing out_signal

Design error detection » If a design-error objective that depends on out signal
is proven valid, that objective is valid for all simulations.
In this case, the stubbing did not affect the results of the
analysis.

» If a design-error objective that depends on out signal
is falsified, the analysis cannot create a test case. The
analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Test case generation + If a test objective that depends on the value of

out signal is satisfied, the analysis cannot create a test
case. The analysis cannot determine which input to the
stubbed block produces the output that satisfies the
objective.

» If a test objective that depends on the value of
out signal is unsatisfiable, there is no simulation that
can satisfy that objective. In this case, the stubbing did
not affect the results of the analysis.

Property proving » If a proof objective that depends on out signal is
proven valid, that objective is valid for all simulations. In
this case, the stubbing did not affect the results of the
analysis.

» If a proof objective that depends on out signal is
falsified, the analysis cannot create a counterexample.
The analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo sfun_ fcncall has an S-Function block. The S-
function sfun_fcncall triggers the execution of the function-call subsystems f1 subsys1
and f2 subsys2 on the first and second elements of the first output port.

2-9

matlab:sfcndemo_sfun_fcncall

2 How the Simulink Design Verifier Software Works

[T

Constant

2-10

- v
Sum sfun_fenecall 10
! - Diemice 1 Qut ;@

z Functicn call Ot
Unit Drelay S5-Function = f1 subsys1 Ot

0
Out v | |

i
f2 subsys2

Scope

matlabrootitoolbox'simulink'simdemas'simfeatures'srcisfun_fencall .o .

If you do not enable support for an S-function in Simulink Design Verifier and automatic
stubbing is enabled, the analysis ignores the behavior of the S-function. As a result, the
code that triggers the two function-call subsystems is ignored, resulting in two
unsatisfiable objectives. Since the function calls are ignored, the contents of those
subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support Limitations
and Considerations for S-Functions and C/C++ Code” on page 3-32

Analyze a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, with a simple Simulink
model as an example.

* “Check Model Compatibility” on page 2-11

* “Turn On Automatic Stubbing” on page 2-13

* “Review Results” on page 2-13

* “Achieve Complete Results” on page 2-14

The following model contains a Discrete State-Space block, which is not compatible with
Simulink Design Verifier.

Handle Incompatibilities with Automatic Stubbing

Y

yinFECx{nj+Duin) [
@ #n+1 =Axn+Buln) % o (D
In - Outt
Disrete State-Space Saturation

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible
with Simulink Design Verifier: by the Simulink Design Verifier compatibility check or by
running a Simulink Design Verifier analysis.

To run the Simulink Design Verifier compatibility check:

* On the Design Verifier tab, click Check Compatibility.

Simulink Design Verifier Results Summany: ex_auto_stub *

21-Nov-2018 17:38:12

Checking compatibility for test generation: model 'ex_auto_stub'
Compiling model...done

Building model representation...done

21-MNov-2018 17:38:21
'ex_auto_stub' is for test generation with Simulink Design

Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results
of the analysis might be incomplete.

See documentation.

Save Log Generate Tests Close

2-11

2 How the Simulink Design Verifier Software Works

» Select the analysis that you want to perform.

To run a Simulink Design Verifier analysis, on the Design Verifier tab, in the Mode
section, select any of these options:

* Select Design Error Detection, then click Detect Design Errors.

* Select Test Generation, then click Generate Tests.

* Select Property Proving, then click Prove Properties.

The software first checks the compatibility of the model. If the model itself is
incompatible, for example, if it uses a variable-step solver, the analysis cannot
continue.

If it finds incompatible elements in the model, the software analyzes the model and, by
default, stubs out the incompatible elements. The Diagnostic Viewer also opens, listing
the incompatibilities.

& Diagnostic Viewer E\@
= 1% % B I[& % & @

ex_auto_stubbi...

- {'a SLDV Compatibility Analysis & 2 @
3:20:09 PM 1210/2013 Elapsed:7 sec

/My Simulink Design Verifier has only partial support for some elements of the model:
'ex_auto_stubbing' is partially compatible with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results of
the analysis might be incomplete.

See documentation.

Component: sldv | Category: Design Verifier compatibility VWarning

/b Block 'ex_auto_stubbing/Discrete State-Space' is of type DiscreteStateSpace. Simulink Design:
Verifier does not support blocks of this type.]
See documentaticn.

Component: sldv | Category: Design Verifier compatibility VWarning

2-12

Handle Incompatibilities with Automatic Stubbing

Note For more information, see “View Diagnostics” (Simulink).

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting, in
the Configuration Parameters dialog box, on the main Design Verifier pane, select
Automatic stubbing of unsupported block and functions. When you run the analysis,
the software tells you that stubbing is turned on and the analysis continues.

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the results.
In this report, generated after a test case generation analysis, you see a table of
unsupported blocks that the software encountered.

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. They were abstracted during the
analysis. This can lead Simulink Design Verifier to produce only partial results for parts of the model that
depends on the output values of these blocks.

Block Type
Discrete State-Space DiscreteStateSpace

The generated analysis report for the example model shows that the objectives are
undecided because of stubbing. The software cannot generate test cases because it does
not understand the operation of the Discrete State-Space block.

Objectives Undecided Due to Stubbing

Simulink Design Verifier was not able to decide these objectives due to stubbing.

Type Model Item Description Analysis Time
(sec)

2 Decision Saturation input > lower limit F 12

3 Decision Saturation input > lower limit T 12

4 Decision Saturation input >= upper limit F 12

5 Decision Saturation input >= upper limit T 12

2-13

2 How the Simulink Design Verifier Software Works

Achieve Complete Results
If your analysis does not achieve complete results because of the stubbing, you can define

custom block replacements to give a more precise definition of the unsupported blocks.
For more information, follow the steps in “Block Replacements for Unsupported Blocks”.

2-14

Analyze Export-Function Models

Analyze Export-Function Models

Simulink Design Verifier supports design error detection, test generation, and property
proving for export-function models. The software creates schedulers that invoke the
export-function models, and then performs the analysis on the scheduler model. You can
analyze export-function models with periodic and aperiodic function-call groups. The
scheduler invokes the function calls based on the sample times and priorities set in the
top model. For more information, see “Export-Function Models Overview” (Simulink).

Analyze an Export-Function Model with Function-Call
Subsystems

When you invoke Simulink Design Verifier analysis on a model that consists of export-
function models, the software creates a scheduler model and then performs the analysis.
By default, the scheduler model that the software creates is saved in this location
<current folder>\sldv_output\<model name>

\<model name> SldvScheduler.slx

This example shows how to analyze an AUTOSAR example model
sldvExportFunction autosar multirunnables that consists of periodic function-
call subsystems.

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox', 'sldv', 'examples'));
2 Open the sldvExportFunction autosar multirunnables model.

open_system('sldvExportFunction autosar multirunnables');

3 To run the test generation analysis, on the Design Verifier tab, click Generate
Tests.

The Results Summary window indicates that a scheduler model

sldvExportFunction autosar multirunnables SldvScheduler.slx was
created. You can also generate a scheduler model by using sldvextract.

2-15

2 How the Simulink Design Verifier Software Works

Simulink Design Verifier Results Summary: sldvExportFunction_autosar_multirunnables_Sl..

~

Progress

Objectives processed of7
Satisfied 0
Unsatisfiable 0
Elapsed time 0:00

Creating a new model from the contents of Export Function model
"sldvExportFunction_autosar_multirunnables”.

MNew Model File:H:\sldv_output\sldvExportFunction_autosar_multirunnables
\sldvExportFunction_autosar_multirunnables_SldvScheduler.slx

14-May-2019 13:33:07

Preprocessing model...done

Checking compatibility for test generation: model
'sldvExportFunction_autosar_multirunnables'
Compiling model...done

Building model representation...done

14-May-2019 13:33:14
'sldvExportFunction_autosar_multirunnables_SldvSchedule2' is compatible for test
generation with Simulink Design Verifier.

2-16

Analyze Export-Function Models

sldvExporiFunction_aut]

Runnablel PPort DET f— >
Cor— PPor_DET

RPort_DE1 Runnable2

PPort_DE2 b
Runnabled =
(2)— PR e

N

b

L

RPort_DE1_ErrorStatus) FFort_DE1
PPort_DE3 pl—»(3)
=
RFort DE1_ErorStatus FPor_DE3
RPort_DEZ RPort DE2 PPort DE4
o PPort_DE4
Signal spec]
and routing Signal spec
and routing
4
Fun

_SldvExportFenScheduler

The scheduler model consists of a MATLAB function block
_SldvExportFcnScheduler. The function calls are called periodically as the model
consists of periodic function-call subsystem.

The MATLAB code specifies the order in which the periodic function-call executes.
The Runnablel and Runnable2 executes first because the time period is 1 for both
of them. After 10 time steps, the Runnable3 executes.

2-17

2 How the Simulink Design Verifier Software Works

| _SldvExportFcnScheduler = | +
Ik &uncticn Run ()
"4 Sample Time Legend - (] x = persistent t:

g = if isempty(t)
sldvExportFunction_autosar_multirunnables =l © = int32(0):
Color Annotation Description Value 6 end

- FO Exported Discrete 1 (period) T

- El Exported Discrete 1 (period) : il Sounauied the

- F2 Exported Discrete 10 {period) 10 = RunnableZ ()
11

- Sonstant ok 12 - if mod(t, int32(10)) == 0
13 — Runnable3() ;
14 end
15
16 — t =t + int32(1);
17
18 end

If the model consists of aperiodic function-call subsystems, the scheduler consists of
an additional inport AsyncCallCount. The value of AsyncCallCount indicates
whether to invoke the function-call or not in a time step.

For example, if the Runnablel is an aperiodic function-call subsystem, the scheduler
consists of AsyncCallCount inport to invoke the scheduler. The Sample Time
Legend and the scheduler model for the aperiodic function-call is shown in the
graphic.

2-18

Analyze Export-Function Models

i". Sample Time Legend

sldvExportFunction_autosar_multirunnables

Inf

Constant

Color Annotation Description Value
- F1 Exported Discrele 1 (period)
- F2 Exported Discrete 10 (period)
E FO Exported Inherit Runnablet

Inf

RPot_DE1

RPort_DE1_ErmorStatus

-~ --=-=-----= Runnable2

---==-=-=-=-- " Runnabled

RPort_DE2

AsyncCallCount

Signal spec.
and routing

/sldvExpovﬁunctlonjutnsa M
------ P Runnable1
PPort_DE1 —@
<
PPort_DE1
PPort_DE2 |—
FPon_DE2
RPort_DE1
PPort_DE3 F— » 3)
PPort_DE3
RPort_DE1_ErrorStatus
PPort DE4 F— > 2 ED!
|RPart_DE2 PPort_DE4
AN -
Signal speac.
and routing
>)
Run
=t send_lcn:!i
_SldvExportFenScheduler

After the test generation analysis, in the summary window, you see the results that

7/7 objectives are Satisfied.

To generate a coverage report by simulating the test cases, in the Results Summary
window, click Simulate tests and produce a model coverage report.

The software simulates all the test cases, collects model coverage information, and

displays a coverage report.

To view the detailed analysis report, click HTML in the Results Summary window.

The Schedule for Export Function Analysis section in the Analysis Information
chapter lists the schedule for invoking the export-functions.

2-19

2 How the Simulink Design Verifier Software Works

2-20

Schedule for Export Function Analysis

Simulink Design Vernfier assumed the following schedule for nvoking Export Functions

during analysis

Order |[Function-Call Inport

Sample

Number of times mvoked per

Time(sec)|sample hat

1 Faunnablel 1 1

2 Funnable? 1 1

3 Eunnable3 10 1
Limitations

functions with multiple function-call initiators.

See Also

More About

. “Export-Function Models” (Simulink)
. “Analyze a Model” on page 1-4

Simulink Design Verifier analysis does not support a model that consists of export-

A masked model block that exports a Simulink Function block is not supported.

Nonfinite Data

Nonfinite Data

Simulink Design Verifier does not support nonfinite data (for example, NaN and Inf) and
related operations.

During an analysis, the software handles nonfinite operations as follows:
* In the Relational Operator block:

+ Ifthe Relational operator parameter is isFinite, the output is always 1.
+ If the Relational operator parameter is isNan or isInf, the output is always 0.
* In the MATLAB Function block:

* For the isFinite function, the output is always 1.
* For the isNan and isInf functions, the output is always 0.

2-21

2 How the Simulink Design Verifier Software Works

Approximations

2-22

In this section...

“Approximations During Model Analysis” on page 2-22
“Types of Approximations” on page 2-22
“Floating-Point to Rational Number Conversion” on page 2-23

“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page
2-23

“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point
Data Types” on page 2-24

“While Loops” on page 2-24

Approximations During Model Analysis

The Simulink Design Verifier software attempts to generate inputs and parameters to
achieve objectives. However, there could be an infinite number of values for the software
to search. To create reasonable limits on the analysis, the software performs
approximations to simplify the analysis. The software records any approximations it
performed in the Analysis Information chapter of the Simulink Design Verifier HTML
report. For a description of this chapter, see “Analysis Information Chapter” on page 13-
40.

Review the analysis results carefully when the software uses approximations. Evaluate
your model to identify which blocks or subsystems caused the software to perform the
approximations.

Rarely, an approximation can result in test cases that fail to achieve test objectives or
demonstrate a design error, or counterexamples that fail to falsify proof objectives. For
example, suppose the software generates a test case signal that should achieve an
objective by exceeding a threshold; a floating-point round-off error might prevent that
signal from attaining the threshold value.

Types of Approximations

The Simulink Design Verifier software performs the following approximations when it
analyzes a model:

Approximations

“Floating-Point to Rational Number Conversion” on page 2-23

“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on
page 2-23

“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-
Point Data Types” on page 2-24

“While Loops” on page 2-24

Floating-Point to Rational Number Conversion

In some cases, the Simulink Design Verifier software simplifies the linear arithmetic of
floating-point numbers by approximating them with infinite-precision rational numbers.
The software discovers how the logical relationships between these values affects the
objectives. This analysis enables the software to support supervisory logic that is
commonly found in embedded controls designs.

If your model contains floating-point values in the signals, input values, or block
parameters, Simulink Design Verifier converts some values to rational numbers before
performing its analysis. As a result of these approximations:

* Round-off error is not considered.

* Upper and lower bounds of floating-point numbers are not considered.

» If your model casts floating-point values to integer values, the integer representation
can affect tests generated for the model. In some rare cases the generated tests may
not satisfy objectives associated with the floating-point values.

Linearization of Two-Dimensional Lookup Tables for Floating-
Point Data Types

The Simulink Design Verifier software does not support nonlinear arithmetic for floating-
point data types. If your model contains any 2-D Lookup Table blocks, or n-D Lookup
Table blocks where n = 2, with all of the following characteristics, the software
approximates nonlinear two-dimensional interpolation with linear interpolation by fitting
planes to each interpolation interval.

2-23

2 How the Simulink Design Verifier Software Works

2-24

Block Characteristics

n-D Lookup Table block, n =
A

Interpolation method parameter is Linear.
* Extrapolation method parameter is Clip or Linear.

* The input and output signals both have the floating-
point data type.

Approximation of One- and Two-Dimensional Lookup Tables
for Integer and Fixed-Point Data Types

If your model contains lookup tables of the following characteristics, Simulink Design
Verifier automatically converts your original lookup table into a new lookup table
composed of breakpoints that are evenly-spaced in each of their respective dimensions.

Block Characteristics

n-D Lookup Table block, n =
lorn=2:

Interpolation method parameteris Linear.
* Extrapolation method parameter is Clip .

* Index search method parameter is Linear search
or Binary search.

* The input and output signals are both of the same type
and are both integer type or fixed-point type.

This approximation allows Simulink Design Verifier to generate tests significantly faster.
The time saved is pronounced when you have unsatisfiable test objectives in your model.

If Simulink Design Verifier applies such approximations to your model, the Simulink
Design Verifier report includes details of the approximation.

While Loops

If your model or a Stateflow chart in your model contains a while loop, Simulink Design
Verifier tries to detect a conservative constant bound that allows the while loop to exit. If
the software cannot find a constant bound, it performs a while loop approximation. With
this approximation, the analysis does not prove objectives to be valid or unsatisfiable and
it does not prove dead logic. The generated analysis report notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as
described in the following table.

Approximations

Analysis Mode While Loop Approximation

Design Error Detection Sets number of while loop iterations to 3.
Does not report dead logic or valid
objectives.

Test Case Generation Sets number of while loop iterations to 3.
Does not report unsatisfiable objectives.

Property Proving Sets number of while loop iterations to 3.
Does not report valid objectives.

2-25

2 How the Simulink Design Verifier Software Works

Reporting Approximations Through Validation Results

2-26

Simulink Design Verifier performs approximations during analysis. The software identifies
the presence of approximations and reports them at the level of each objective status in
the Objective Status Chapter of the Simulink Design Verifier HTML report. For more
information, see “Approximations During Model Analysis” on page 2-22 and “Objectives
Status Chapters” on page 13-45.

To validate the test cases or counterexamples during simulation, the model is locked in
fast restart mode. For more information, see “Fast Restart Methodology” (Simulink).

For example, to ensure the effect of approximations, in the test generation analysis the
test cases are validated against the coverage data during analysis.

Impact of Approximations on Objectives Status

The software provides the test cases or counterexamples for the objectives that are
impacted due to approximations during analysis. These objectives are reported as
“Objectives Undecided with Testcases” on page 13-53 for test generation analysis and
“Objectives Undecided with Counterexamples” on page 13-55 for property-proving
analysis.

The software confirms the objectives that can be impacted due to approximations as dead
logic, valid, or unsatisfiable. This table summarizes these objectives for all analysis
modes.

Analysis Mode Objectives Status

Design error detection |¢ “Dead Logic under Approximation” on page 13-49
* “Objectives Valid under Approximation” on page 13-50

Test generation “Objectives Unsatisfiable under Approximation” on page 13-52

Property proving “Objectives Valid under Approximation” on page 13-54

The software is unable to confirm the objectives status through validation results for
these cases:

* The objectives introduced by the block replacement. For more information, see “What
Is Block Replacement?” on page 4-2.

* The Verification Subsystem consists of the sldv.test or sldv.prove function.

Reporting Approximations Through Validation Results

* You abort the analysis by using the Stop button in the Simulink Design Verifier Results
Summary window or the software exceeds its “Maximum analysis time” on page 15-
15. Therefore, some objectives remain unvalidated during analysis and the software
is unable to confirm the objectives status.

* The block with an objective is inside the Simulink test harness but outside the
component under test. For more information, see “Test Harness and Model
Relationship” (Simulink Test).

This table summarizes the objectives statuses for the preceding cases. To confirm the
status of the objectives, you must run additional simulations of test cases or
counterexamples.

Analysis Mode Objectives Status

Design error detection |¢ “Active Logic - Needs Simulation” on page 13-49
* “Objectives Falsified - Needs Simulation” on page 13-50

Test generation “Objectives Satisfied - Needs Simulation” on page 13-52

Property proving “Objectives Falsified - Needs Simulation” on page 13-55

Identify the Effect of Approximations Through Validation
Results

This example shows how approximations affect the objectives status of the Switch block.
In the sldvApproximationsExample model, the calculations 1./3 and 2./3 in the
Constant block result in “Floating-Point to Rational Number Conversion” on page 2-23
during analysis.

For inport In2 equal to -1, the input 2 of the Switch block is not equal to 0 during
simulation. Therefore, the Switch does not select inport In3 as output. For test
generation and property-proving analysis, the objective logical trigger input
false(output is from 3rd input port) for the Switch block is undecided due to
the impact of approximations during analysis.

1 Open the model sldvApproximationsExample.

2-27

2 How the Simulink Design Verifier Software Works

Reporting Approximations Through Validation Results

In1
2)y—++ n.a
-+
Add1 ’ — . —
1.3 243 Switch

Constanti Constant2

In3

This example shows how Simulink Design Verifier reports the impact of approximations
through validation results.

In this model, approximations occur due to floating point to rational number conversion
during analysis. In the Simulink Design Verifier Report, the Objective Status chapter
reports the objectives impacted by approximations for test generation and property
proving analysis.

Caopyright 2017 The MathWorks, Inc.

2 To perform test generation analysis, on the Design Verifier tab, click Generate
Tests. The software simulates the model and validates the test results against
coverage data.

3 To view the detailed analysis report, click HTML in the Simulink Design Verifier
Results Summary window.

This image shows the Test Objectives Status section of the generated analysis report.
The software provides two test cases that are impacted by approximations.

2-28

Reporting Approximations Through Validation Results

Chapter 3. Test Objectives Status
Table of Contents

Objectives Satisfied
Objectives Undecided with Testcases

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

. [Analysis
Type Model Item Description Time (sec) Test Case
N Decision |Switch lc?glcal trigger input true (output 1s 14 1
from 1st input port)

Objectives Undecided with Testcases

Simulink Design Verifier was not able to decide these objectives due to the impact of approximations during analysis

- |Analysis
Type Model Item IDescription Time (sec) Test Case
1 Decision |Switch lc?glcal trigger nput false (output 1s 14 b
o from 3rd mput port)

To perform property proving analysis, on the Design Verifier tab, in the Mode
section, select Property Proving. Click Prove Properties.

This image shows the Proof Objectives Status section of the generated analysis
report.

Chapter 3. Proof Objectives Status
Table of Contents

Objectives Undecided with Counterexamples

Objectives Undecided with Counterexamples

. |Analysis . o
Type Model Item Description Time (sec) Counterexample|
1 [Preef p o Objective Objective: [1. 2] 11 1
objective

The software provides one counterexample that is impacted by approximations.

Note Th sldvApproximationsExample example model is preconfigured with the
“Run additional analysis to reduce instances of rational approximation” on page 15-
19 option set to Off. If you enable this option and run the analysis, the Undecided
with Testcases test objective is reported as Unsatisfiable and the proof
objective is reported as Valid.

2-29

2 How the Simulink Design Verifier Software Works

See Also
More About

. “Approximations” on page 2-22
. “Simulink Design Verifier Reports” on page 13-38

2-30

Logic Operations Short-Circuiting

Logic Operations Short-Circuiting

Simulink Design Verifier can consider logic blocks as short-circuiting during analysis,
depending on the value you set for the Simulink Coverage
CovLogicBlockShortCircuit “Model Parameters” (Simulink).

If CovLogicBlockShortCircuitis 'on', Simulink Design Verifier short-circuits logic
blocks during analysis. In this case, when a previous input alone determines the block
output, the analysis ignores any remaining block inputs. For example, if the first input to a
Logical Operator block whose Operator parameter specifies AND is false, the analysis
ignores the values of the other inputs.

Consider the following example model, with the Model coverage objectives parameter
set to Condition Decision.

O r—
In1
(z) » Ao F——»{(1)
In2

St

h

Lo-gical
Orperator

When Simulink Design Verifier analyzes this model for Condition Decision coverage, the
analysis can only satisfy five of six objectives for the Logical Operator block inputs. The
software cannot generate a test case when the third input to the Logical Operator block is
false. If the second input is false, the third input is false, but the software ignores the
third input due to the short-circuiting. If the second input is true, the third input is never
false.

2-31

2 How the Simulink Design Verifier Software Works

Model Representation for Analysis

2-32

In this section...

“Reuse Model Representation for Analysis” on page 2-32
“Limitations” on page 2-35

When you analyze a model for the first time, Simulink Design Verifier performs a
compatibility check and creates a model representation. The model representation
contains information about model behavior to use for analysis. By default, the software
saves the model representation at the Simulation cache folder (Simulink) location.

If you modify a model and rerun the analysis, Simulink Design Verifier determines
whether to rebuild the model representation or to use the existing Simulink cache
depending on the “Rebuild model representation” on page 15-18 parameter. A rebuild of
the model representation is triggered, when the Rebuild model representation option
issetto If change is detected and the software detects any changes in the model.

Reuse Model Representation for Analysis

The Rebuild model representation option is set to If change is detected by
default and the software validates the model representation against any model changes
and Simulink Design Verifier analysis options. The software then determines whether to
reuse or to rebuild the model representation for analysis. When you set the option to
Always, the model representation is rebuilt during every model analysis.

When the Rebuild model representation option is set to If change is detected,
Simulink Design Verifier checks for these changes in a model:

* Simulink Design Verifier Options on page 2-32

» “Structural Checksum of a Model” on page 2-34

* “Additional Dependencies” on page 2-34

Simulink Design Verifier Options

The software validates the model representation against any changes in the Simulink
Design Verifier options. This table lists the options that do not affect the model
representation, and if you change any of these options the software reuses the model
representation.

Model Representation for Analysis

Design Verifier Options

“Maximum analysis time” on page 15-
15

“Display unsatisfiable test objectives” on
page 15-15

“Output folder” on page 15-16

“Make output file names unique by
adding a suffix” on page 15-17

“Run additional analysis to reduce
instances of rational approximation” on
page 15-19

“Ignore objectives based on filter” on
page 15-22

“Filter file” on page 15-23

Test Generation options

“Test conditions” on page 15-40
“Test objectives” on page 15-41

“Maximum test case steps” on page 15-
41

“Test suite optimization” on page 15-42

“Extend existing test cases” on page 15-
47

“Ignore objectives satisfied by existing
test cases” on page 15-49

“Ignore objectives satisfied in existing
coverage data” on page 15-49

“Coverage data file” on page 15-50

Property Proving options

“Assertion blocks” on page 15-59
“Proof assumptions” on page 15-60
“Strategy” on page 15-61

“Maximum violation steps” on page 15-
62

2-33

2 How the Simulink Design Verifier Software Works

Results generation options * “Save test data to file” on page 15-65
e “Data file name” on page 15-66

¢ “Include expected output values” on
page 15-66

¢ “Randomize data that do not affect the
outcome” on page 15-67

* “Generate separate harness model after
analysis” on page 15-69

* “Harness model file name” on page 15-
70

» “Reference input model in generated
harness” on page 15-70

* “Harness source” on page 15-71
* “Test File Name” on page 15-72
* “Test Harness Name” on page 15-73

Report generation options * “Generate report of the results” on page
15-74

* “Generate additional report in PDF
format” on page 15-75

* “Report file name” on page 15-76

* “Include screen shots of properties” on
page 15-77

* “Display report” on page 15-78

Structural Checksum of a Model

A structural checksum is a computation that detects changes in the model that can affect
simulation results. For more information about the kinds of changes that affect the model,
see “Rebuild” (Simulink).

Additional Dependencies

In addition to structural checksum, Simulink Design Verifier checks for changes in model
dependencies that can impact the analysis results, such as:

2-34

See Also

Simulation run-time parameters that are defined in the data dictionary or the MATLAB
base, mask, or model workspaces

External C or C++ source code files that the model uses during simulation
Minimum and maximum constraints that are specified for block parameters

Block parameters that are specified for blocks in the “Simulink Design Verifier Block
Library” on page 1-3, such as Values

Limitations

The model representation is always rebuilt:

* When you “Generate Test Cases for Embedded Coder Generated Code” on page 7-
32.

* When Simulink Design Verifier analysis is started from other products such as
Simulink Test™, Simulink Coverage, Simulink Check™, and Simulink
Requirements™.

Simulink Design Verifier does not detect changes in the custom block replacement
rules that you apply, even if the Rebuild model representation option is set to If
change is detected. In such cases, the Simulink cache is reused for analysis and a
warning message is displayed in the Diagnostic Viewer that suggests you to set the
Rebuild model representation option to Always, if you want to rebuild the model
representation.

See Also
“Extend Existing Test Cases by Reusing Model Representation” on page 2-39

More About

Configure Model Representation Options on page 2-45
“Check Model Compatibility” on page 3-2
“Simulink Design Verifier Options” on page 15-2

2-35

2 How the Simulink Design Verifier Software Works

Share Simulink Cache File for Faster Analysis

In this section...

“Store the Simulink Cache File” on page 2-36
“Reuse the Simulink Cache File” on page 2-36

You can share the Simulink cache file for faster Simulink Design Verifier analysis. When
you analyze a model, Simulink Design Verifier performs a compatibility check and creates
a Simulink cache file that contains the model representation information. If there is no
change in the model, Simulink Design Verifier reuses the model representation from the
Simulink cache file without performing the compatibility check again. For more
information, see “Share Build Artifacts for Faster Simulation and Code Generation”
(Simulink) and “Model Representation for Analysis” on page 2-32.

Store the Simulink Cache File

The Simulink cache file is stored in the location specified in the Simulink Preferences >
General dialog box, under Simulation cache folder. By default, the Simulink cache file
is stored in the current working directory.

2-36

L Simulink Preferences — O
General Preferences
v P2 simulink Preferences
Folders for Generated Files
E General
Editor Simulation cache folder: | | Browse...
] Model File
Code generation folder: | | Browse...
Code generation folder structure: | Model specific i

The file name of the Simulink cache is the same as the file name of the model with
an .slxc file extension.

Reuse the Simulink Cache File

You can reuse the Simulink cache file to speed up the Simulink Design Verifier analysis for
later use by yourself or others. When you perform Simulink Design Verifier analysis, the

Share Simulink Cache File for Faster Analysis

software determines whether to rebuild the model representation based on the “Rebuild
model representation” on page 15-18 option. By default, this option is set to If change
is detected and if there is no change in the model, the software reuses the model
representation from the Simulink cache file for analysis.

If Rebuild model representation is set to Always or if the software detects any change
in the model during analysis, the software rebuilds the model representation and updates
the Simulink cache file.

Note The Simulink cache file accumulates model representation build artifacts for the
release in which it was created and supports all platforms. This cache file does not
support cross-release compatibility.

For information on what a specific Simulink cache contains, double-click the Simulink
cache file. The report contains information of supported releases, platforms, and model
representation.

Simulink cache for sldvdemo_cruise_control

This Simulink cache contains derived files for the following releases and platforms:

R2019b : all platforms

Verification and Validation

« Model representation for test generation
« NModel representation for property proving
« Model representation for design error detection

For example, suppose a team is working on large models and uses a source control
system to manage design files. To reduce the amount of time for Simulink Design Verifier
analysis, the team follows these steps:

1 A developer pulls the latest version of the Simulink model from the source control
system.

2-37

2 How the Simulink Design Verifier Software Works

2-38

Performs Simulink Design Verifier test case generation analysis and shares the latest
version of Simulink cache file to the source control system and the generated test
cases to the build archive.

Test engineer pulls the latest version of the model and the Simulink cache file from
the source control systems. Also, pulls the existing test cases from the build archive.

Performs test case extension on the same model by using the existing test cases. If no
changes are detected in the model, the model representation from the Simulink
cache file is reused for analysis. For a detailed example, see “Extend Existing Test
Cases by Reusing Model Representation” on page 2-39.

If the test engineer, changes the model or Simulink Design Verifier options that
affects the compatibility results, the model representation is rebuilt and the Simulink
cache file is updated. For more information on Simulink Design Verifier options that
leverage the reuse of model representation, see “Reuse Model Representation for
Analysis” on page 2-32.

See Also

More About

“Model Representation for Analysis” on page 2-32
Configure Model Representation Options on page 2-45

External Websites

Simulink Cache (1 min, 27 sec)

Extend Existing Test Cases by Reusing Model Representation

Extend Existing Test Cases by Reusing Model
Representation

This example shows how to avoid unneeded model representation builds when
reanalyzing a model. Consider a case where you perform test generation and the analysis
exceeds maximum analysis time. In the specified analysis time, Simulink Design Verifier
analyzes some objectives and saves the generated test cases in a MAT-file.

To reanalyze the model, you update the maximum analysis time and select the extend
existing test cases option. To speed up the analysis, set the Rebuild model
representation option to If change is detected. Simulink Design Verifier
reanalyzes the model by reusing the model representation. For more information, see
“Model Representation for Analysis” on page 2-32.

Step 1. Open the model and specify analysis options

Generate test cases for sldvdemo cruise control model by specifying the
sldvoptions.

model = 'sldvdemo cruise control';

open_system(model);

opts = sldvoptions;

opts.Mode = "TestGeneration";

opts.MaxProcessTime = 10;

opts.RebuildModelRepresentation = "IfChangelsDetected";

[status, files] = sldvrun('sldvdemo cruise control', opts, true);

2-39

2 How the Simulink Design Verifier Software Works

Simulink Design Verifier
Cruise Control Test Generation

L1 3} ¥ enable
enable
L2 3 ¥ brake throt —F
brake throt
L3 3 P cat
set [0 100]
() —>opee
speed Actual speed
(2 > inc target ———»(2)
inc target
L3 } dac
dec

This example shows how to generate test cases that achieve complete model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One of the test objectives forces the discrete integrator
in the Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500.
The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

Toggle Speed
’ - ek Constraint ":'""D"“TI"::
et e (double-click) et e

Toeggle Constraint

Copyright 2006-2012 The MathWarks, Inc.

The Diagnostic Viewer window displays the Test Generation analysis error.

2-40

Extend Existing Test Cases by Reusing Model Representation

Simulink Design Verifier has exceeded the maximum processing time.
You can extend the time limit by modifying the "Maximum analysis
time" edit field on the Design Verifier pane of the configuration
dialog or by modifying the "MaxProcessTime" attribute of the options
object.

After the analysis is completed, the Results Summary window displays the results. The
software reports 22/24 objectives as satisfied and 2/24 objectives as undecided.

Progress -
Objectives processed 5/5

Valid 3

Falsified 2

Elapsed time 1:01

Design error detection completed normally.

3/6 objectives valid
2/6 objectives falsified - need simulation
1/6 objective excluded

Results:

* Open filter viewer

* Highlight analysis results on modsl

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (PDF)
* Create harness model

* Export test cases to Simulink Test

Data saved in: sldvexControllerFilterObjectives_sldvdata.mat

in folder: H:\Documents\MATLAB\sldv_output
‘\sldvexControllerFilterObjectives

2-41

2 How the Simulink Design Verifier Software Works

2-42

Step 2. Reanalyze the model by modifying the sldvptions

To reanalyze the model, you select the extend existing test cases option and update the
maximum analysis time. The Reuse model representation option is set to If change
is detected. The software validates the cache model representation, detects no
change, and reuses the model representation for analysis.

opts.MaxProcessTime =500;
opts.ExtendExistingTests='on"';
opts.IgnoreExistTestSatisfied = 'on';
opts.ExistingTestFile=files.DataFile;
sldvrun('sldvdemo cruise control', opts, true);

The results show that 24/24 objectives are satisfied and no additional test cases are
generated.

Extend Existing Test Cases by Reusing Model Representation

Simulink Design Verifier Results Summarny: sldvdemo_cruise_control >

Progress -

Objectives processed 24/24
Satisfied 24
Unsatisfiable 1]
Elapsed time 0:21

Test generation completed normally.

2/24 objectives satisfied.
22/24 objectives satisfied - no test case

Results:

* Highlight analysis results on model

* View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (FDF)

* Create harness model

* Eyport test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdatal2.mat
in folder: H:\work\sldv output\sldvdemo cruise control

View Log Close

2-43

2 How the Simulink Design Verifier Software Works

2-44

Close the model.
close system('sldvdemo cruise control', 0);

Related Topics

* “Model Representation for Analysis” on page 2-32
+ “Extend an Existing Test Suite” on page 7-78

Configure Model Representation Options

Configure Model Representation Options

You can configure the option to build or reuse the model representation from the Design
Verifier pane, “Rebuild model representation” on page 15-18 option or by using the
sldvoptions. By default, the option is set to If change is detected and the
software reuses the model representation for analysis, if there is no change in the model.

When you perform analysis, the Results Summary window displays the information
regarding the model representation. If you select Always for the Rebuild model
representation option, the software rebuilds the model representation during analysis.

Progress I
Objectives processed 17/32

Satisfied 17

Unsatisfiable 0

Elapsed time 0:19

13-Nov-2018 16:39:06

Checking compatibility for test generation: model 'sldvdemo_cruise_control’
Compiling model.,.done

Building model representation...done |

13-Nov-2018 16:39:09
'sldwdemo_cruise_control' is compatible for test generation with Simulink Design
Verifier.

Generating tests using model representation from 13-Nov-2018 16:39:09...

SATISFIED
Controller/Logical Operatorl
Logic: input port 1 false
Analysis Time = 00:00:18

SATISFIED

Controller/Switch2

logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18

Disable Highlighting Stop

2-45

2 How the Simulink Design Verifier Software Works

If you select If change is detected option, the software validates the existing
cached model representation. If the cached model is successfully validated, it is reused
for analysis.

[Pl Simulink Design Verif Summa emo_cruise_con X
Progress |
Objectives processed 2732
Satisfied 27
Unsatisfiable 0
Elapsed time 0:18
]
13-Nov-2018 16:41:46
Validating cached model representation from 11-Nov-2018 16:39:09...d0ne|
13-Nov-2018 16:41:47
| 'sldwdemo_cruise_control' is compatible for test generation with Simulink Design
| Verifier.
i
| | Generating tests using model representation from 13-Mov-2018 16:39:09...
SATISFIED
Controller/Switch2
logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18
SATISFIED
Controller/Switch1
logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18
SATISFIED
Controller/Logical Operatorl o
| Disable Highlighting Stop

If change is detected in the model, the model representation is rebuilt. For more
information, see Changes That Affect the Model Representation Rebuild on page 2-32.

2-46

See Also

[l Simulink D erifier mma lemo_ o hos
Progress |
Objectives processed 10/12
Satisfied 10
Unsatisfiable % 0
Elapsed time 0:20
Ll
27-Nov-2018 16:04:13
Validating cached model representation from 27-Nov-2018 16:00:44...change
detected
| |27-Nov-2018 16:04:13
| | Checking compatibility for test generation: model 'sldvdemo_cruise_control’
| | Compiling model...done
i |Building model representation...done
|
| |27-Nov-2018 16:04:16
'sldvdemo_cruise_control' is compatible for test generation with Simulink Design
Verifier.
Generating tests using model representation from 27-Nov-2018 16:04:16...
| | SATISFIED
Controller/Switch2
logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:19
SATISFIED
ControllerfSwitch3 b
Disable Highlighting Stop

See Also

More About

. “Model Representation for Analysis” on page 2-32
. “Check Model Compatibility” on page 3-2

2-47

Checking Compatibility with the
Simulink Design Verifier Software

* “Check Model Compatibility” on page 3-2

* “Supported and Unsupported Simulink Blocks in Simulink Design Verifier”
on page 3-7

» “Support Limitations for Simulink Software Features” on page 3-18

* “Support Limitations for Model Blocks” on page 3-21

* “Support Limitations for Stateflow Software Features” on page 3-23
* “Support Limitations for MATLAB for Code Generation” on page 3-28

* “Support Limitations and Considerations for S-Functions and C/C++ Code”
on page 3-32

3 Checking Compatibility with the Simulink Design Verifier Software

Check Model Compatibility

3-2

In this section...

“Run Compatibility Check” on page 3-2
“Compatibility Check Results” on page 3-3

With Simulink Design Verifier, you can analyze Simulink models to:

* Detect design errors that can occur at a run time.
* Generate test cases that achieve model coverage.
* Prove properties and identify property violations.

Before Simulink Design Verifier analyzes a model, the software checks whether the model
is compatible for analysis. The model is compatible for analysis when:

* The model is compiled into an executable form.
* The model is compatible with code generation.

* The model performs zero-second simulation with no errors, that is the simulation start
and stop time is 0.

The software supports a broad range of Simulink and Stateflow software capabilities in
your models. However, there are capabilities that the product does not support, described
in “Support Limitations for Simulink Software Features” on page 3-18 and “Support
Limitations for Stateflow Software Features” on page 3-23.

Run Compatibility Check

Before the software begins an analysis, it checks the compatibility of your model, and
then creates a model representation. The model representation includes the model
artifacts that are used during analysis. For more information, see “Model Representation
for Analysis” on page 2-32.

Before you start an analysis, you can run a compatibility check on your model by using
one of these methods. When you use any of these methods, the model representation is
always rebuilt.

* On the Design Verifier tab, in the Analyze section, click Check Compatibility.

* In the Model Advisor, select either By Product > Simulink Design Verifier > Check
compatibility with Simulink Design Verifier or By Task > Simulink Design

Check Model Compatibility

Verifier Compatibility Check > Check compatibility with Simulink Design
Verifier. Click Run This Check.

For more information, see “Simulink Design Verifier Checks”.

* To run the compatibility check programmatically at the command line or in a MATLAB
program, use the sldvcompat function . For more information, see sldvcompat.

* To check compatibility of a Subsystem, right-click the Subsystem and select Design
Verifier > Check Subsystem Compatibility.

Compatibility Check Results

When you run a compatibility check on a model, the Results Summary window displays
one of these results:

* “Model Is Compatible” on page 3-3
* “Model Is Incompatible” on page 3-4
* “Model Is Partially Compatible” on page 3-5

Model Is Compatible

If your model is compatible, you can continue with the analysis in the Results Summary
window. For example, to continue the test generation analysis, click Generate Tests.

Simulink Design Verifier Results Summany: sldvdemo_cruise_control ot

21-Nov-2018 15:20:42

Checking compatibility for test generation: model 'sldvdemo_cruise_control'
Compiling model...done

Building model representation...done

21-Nov-2018 15:21:06
'sldvdemo_cruise_control' is compatible for test generation with Simulink Design erifier,

Save Log Generate Tests Close

3-3

3 Checking Compatibility with the Simulink Design Verifier Software

Note After you have completed the compatibility check, if you change the model, you
cannot continue the analysis in the Results Summary window. If you change your model,
rerun the compatibility check for analysis.

Model Is Incompatible

If the model is incompatible with the Simulink Design Verifier, you can identify and fix the
incompatibilities through the Diagnostic Viewer messages. For more information, see
“View Diagnostics” (Simulink).

Simulink Design Verifier Results Summany: sldemo_fuelsys >

21-Mov-2018 17:05:52
Checking compatibility for test generation: model 'sldemo_fuelsys’

21-Mov-2018 17:05:54
'sldemo_fuelsys' is incompatible for test generation with Simulink Design Verifier.

Save Log Generate Tests Close

» If your model uses a variable-step solver, configure the solver “Type” (Simulink) to
Fixed-step.

sldemo_fuelsys

» Simulink Design Verifier Compatibility Analysis & 2

02:49 PM Elapsed: 18 sec
Simulink Design Verifier cannot be used with & variable-step solver. You must configure the solver
options for a fixed-step solver.
See documentation.

Component. simulink | Categery: Design Verifier compatibility error

Simulink Design Verifier failed to initislize: 'sldemo fuelsys' is incompatible for test generation
with Simulink Design Werifier.

Component. simulink | Categery: Design Verifier compatibility error

Check Model Compatibility

» If your model has nonfinite data, change the value of the data or configure the model
so that the data is treated as a variable during Simulink Design Verifier analysis. For
more information, see “Nonfinite Data” on page 2-21.

i

Diagnostic Viewer EI@

E-EJ-&-%-| ¥~ [& e~ @

ex_mManinf

* Simulink Design Verifier Compatibility Analysis & 3

EFRITLTEFETETTFTIEE T FEFFIETTTITETIFLTET FETTFTTTEFITES

m

If your model is large and contains many subsystems, you can use the Test Generation
Advisor to determine whether certain subsystems cause the incompatibility. For more
information, see “Use Test Generation Advisor to Identify Analyzable Components” on
page 7-25.

Model Is Partially Compatible

A model is partially compatible if at least one model object in the model is incompatible.
Simulink Design Verifier continues the analysis for partially compatible model by stubbing
out the unsupported elements. By default, the “Automatic stubbing of unsupported blocks
and functions” on page 15-19 option is set to On. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

3 Checking Compatibility with the Simulink Design Verifier Software

Simulink Design Verifier Results Summary: sldvdemo_sqrt_blockrep >

11-Jul-2019 15:51:14

Checking compatibility for test generation: model 'sldvdemo_sqrt_blockrep’
Compiling model...done

Building model representation...done

11-Jul-2019 15:51:21
'sldwdemo_sqrt_blockrep' is for test generation with Simulink

Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results
of the analysis might be incomplete.

See documentation.

Save Log Generate Tests Close

See Also

“Basic Workflow for Simulink Design Verifier” on page 1-29 | “Block Replacements for
Unsupported Blocks” on page 4-9 | “Model Representation for Analysis” on page 2-32

3-6

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Supported and Unsupported Simulink Blocks in Simulink
Design Verifier

Simulink Design Verifier provides various levels of support for Simulink blocks:

* Fully supported
» Partially supported

* Not supported

If your model contains unsupported blocks, you can enable automatic stubbing. Automatic
stubbing considers the interface of the unsupported blocks, but not their behavior. If any
of the unsupported blocks affect the simulation outcome, however, the analysis might

achieve only partial results. For details about automatic stubbing, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

To achieve 100% coverage, avoid using unsupported blocks in models that you analyze.
Similarly, for partially supported blocks, specify only the block parameters that Simulink
Design Verifier recognizes.

The following tables summarize Simulink Design Verifier analysis support for Simulink
blocks. Each table lists the blocks in a Simulink library and describes support information
for that particular block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are
listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported

Integrator Not supported and not stubbable
Integrator Limited Not supported and not stubbable

3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes
PID Controller Not supported
PID Controller (2 DOF) Not supported

Second Order Integrator

Not supported and not stubbable

Second Order Integrator Limited

Not supported and not stubbable

State-Space

Not supported and not stubbable

Transfer Fcn

Not supported and not stubbable

Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported

Zero-Pole

Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes
Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2 DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
Memory Supported

3-8

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes
Cosine Supported

Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Not supported when:

¢ The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
4,

or

* The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter
is not 0.

1-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

3-9

3 Checking Compatibility with the Simulink Design Verifier Software

Block

Support Notes

n-D Lookup Table

Not supported when:

* The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

* The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
5.

Lookup Table Dynamic

Supported

Prelookup

Not supported when output is an array of buses

Sine

Supported

Math Operations Library

Block Support Notes
Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Not supported
Gain Supported
Magnitude-Angle to Complex Supported
Math Function Supported
Matrix Concatenate Supported
MinMax Supported

3-10

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block

Support Notes

MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported
Product of Elements Supported
Real-Imag to Complex Supported

Reciprocal Sqrt

Not supported

Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Not supported
Sine Wave Function Not supported
Slider Gain Supported
Sqrt Supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported

Trigonometric Function

Supported if Function is sin, cos, or sincos, and
Approximation method is CORDIC.

Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

3-11

3 Checking Compatibility with the Simulink Design Verifier Software

Model-Wide Utilities Library

Block Support Notes
Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes
Atomic Subsystem Supported
Code Reuse Subsystem Supported
Configurable Subsystem Supported
Enable Supported

Enabled Subsystem

Design range checks do not consider specified minimum
and maximum values for blocks connected to the output
port of the subsystem. For more information on design
range checks, see “Check for Specified Minimum and
Maximum Value Violations” on page 6-31.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the output
port of the subsystem. For more information on design
range checks, see “Check for Specified Minimum and
Maximum Value Violations” on page 6-31.

Simulink Design Verifier treats Enabled and Triggered
Subsystems as short-circuited during test generation.

3-12

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block

Support Notes

For Each

Supported with the following limitations:

* When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

¢ When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Each Subsystem

Supported with the following limitations:

* When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition, Test
Objective, Proof Assumption, or Proof Objective
blocks, not supported.

¢ When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported

Function-Call Subsystem

Design range checks do not consider specified minimum
and maximum values for blocks connected to the output
port of the subsystem. For more information on design
range checks, see “Check for Specified Minimum and
Maximum Value Violations” on page 6-31.

Not supported when the Function-Call Subsystem is
invoked using function-call triggers passed via root-level
Inport blocks. For more information see, “Export-Function
Models Overview” (Simulink).

If

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an
If block.

If Action Subsystem

Supported

In Bus Element

Supported

3-13

3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

Inport Supported

Model Supported except for the limitations described in

“Support Limitations for Model Blocks” on page 3-21.

Out Bus Element Supported

Outport Supported

Resettable Subsystem Supported

Subsystem Supported

Switch Case Supported

Switch Case Action Subsystem Supported

Trigger Supported

Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the output
port of the subsystem. For more information on design
range checks, see “Check for Specified Minimum and
Maximum Value Violations” on page 6-31.

Simulink Design Verifier treats Enabled Subsystems as
short-circuited during test generation.

Variant Subsystem

Not supported when the Generate preprocessor
conditionals parameter is enabled.

Only the active variant is analyzed.

While Iterator Subsystem

Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

3-14

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Signal Routing Library

Block Support Notes
Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported

Manual Switch

The Manual Switch block is compatible with the software,
but the analysis ignores this block in a model. The
analysis does not flag the coverage objectives for this
block as satisfiable or unsatisfiable.

Model coverage data is collected for the Manual Switch
block.

Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported

3-15

3 Checking Compatibility with the Simulink Design Verifier Software

Sinks Library
Block Support Notes
Display Supported
Floating Scope Supported
Outport (Outl) Supported
Scope Supported

Stop Simulation

Not supported and not stubbable

Terminator Supported
To File Supported
To Workspace Supported
XY Graph Supported

Sources Library

Block Support Notes

Band-Limited White Noise Not supported

Chirp Signal Not supported

Clock Supported

Constant Supported unless Constant value is inf.
Counter Free-Running Supported

Counter Limited Supported

Digital Clock Supported

Enumerated Constant Supported

From File Not supported. When MAT-file data is stored in MATLAB
timeseries format, not stubbable.

From Workspace Not supported

Ground Supported

Inport (In1) Supported

Pulse Generator Supported

Ramp Supported

3-16

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes

Random Number Not supported and not stubbable
Repeating Sequence Not supported

Repeating Sequence Interpolated Not supported

Repeating Sequence Stair Supported

Signal Builder Not supported

Signal Editor Not supported

Signal Generator Not supported

Sine Wave Not supported

Step Supported

Uniform Random Number Not supported and not stubbable

User-Defined Functions Library

Block Support Notes

Initialize Function Not supported

Interpreted MATLAB Function Not supported

Level-2 MATLAB S-Function For limitations, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page
3-32.

MATLAB Function For limitations, see “Support Limitations for MATLAB for
Code Generation” on page 3-28.

Reset Function Not supported

S-Function Builder For limitations, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page
3-32.

Terminate Function Not supported

3-17

3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for Simulink Software Features

3-18

Simulink Design Verifier does not support the following Simulink software features. Avoid
using these unsupported features.

Not Supported

Description

Variable-step solvers

The software supports only fixed-step solvers.

For more information, see “Fixed Step Solvers in Simulink”
(Simulink).

Callback functions

The software does not execute model callback functions
during the analysis. The results that the analysis generates,
such as the harness model, may behave inconsistently with
the expected behavior.

» If a model or any referenced model calls a callback
function that changes any block parameters, model
parameters, or workspace variables, the analysis does not
reflect those changes.

* Changing the storage class of base workspace variables on
model callback functions or mask initializations is not
supported.

* Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions

The software only supports model callback functions if the
InitFcn callback of the model is empty.

Algebraic loops

The software does not support models that contain algebraic
loops.

For more information, see “Algebraic Loop Concepts”
(Simulink).

Masked subsystem
initialization functions

The software does not support models whose masked
subsystem initialization modifies any attribute of any
workspace parameter.

Support Limitations for Simulink Software Features

Not Supported

Description

Variable-size signals

The software does not support variable-size signals. A
variable-size signal is a signal whose size (number of
elements in a dimension), in addition to its values, can change
during model execution.

For more information, see “Variable-Size Signal Basics”
(Simulink).

Multiword fixed-point
data types

The software does not support multiword fixed-point data
types larger than 128 bits.

Nonzero start times

Although Simulink allows you to specify a nonzero simulation
start time, the analysis generates signal data that begins only
at zero. If your model specifies a nonzero start time:

* Ifyou do not select the Reference input model in
generated harness parameter (the default), the harness
model is a subsystem. The analysis sets the start time of
the harness model to 1 and continues the analysis.

* Ifyou select the Reference input model in generated
harness parameter, a Model block references the harness
model. The software cannot change the start time of the
harness model, so the analysis stops and you see a
recommendation to set the Start time parameter to 0.

* Simulink Design Verifier assumes zero start time for
analysis and generates signal data that begins at zero.
Zero start time might impact the reporting of the objective
status. For example, in the test generation analysis, the
software might report some objectives as Undecided
with Testcases. For more information, see “Simulation
Basics” (Simulink).

3-19

3 Checking Compatibility with the Simulink Design Verifier Software

Not Supported

Description

Nonfinite data

The software does not support nonfinite data (for example,
NaN and Inf) and related operations.

In the Relational Operator block, the software assigns the
output as follows:

* Ifthe Relational operator parameter is isFinite, the
output is always 1.

* If the Relational operator parameter is isNan or isInf,
the output is always 0.

In the MATLAB Function block, the software assigns the
return value as follows:
* For the isFinite function, the output is always 1.

* For the isNan and isInf functions, the output is always
0.

Concurrent execution

The software does not support models that are configured for
concurrent execution.

Signals with nonzero
sample time offset

The software does not support models with signals that have
nonzero sample time offsets.

Models with no output
ports

The software only supports models that have one or more
output ports.

Large floating-point
constants outside the
range [-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of
memory errors or substantial loss of precision. Avoid using
such constants if possible.

Symbolic Dimensions

The software does not support symbolic dimensions for test
generation, property proving, or design error detection.

Simulink Strings

Models that contain blocks with string data types as block
parameters are not supported. For more information, see
“Simulink Strings” (Simulink).

3-20

Support Limitations for Model Blocks

Support Limitations for Model Blocks

Simulink Design Verifier supports the Model block with the following limitations. The
software cannot analyze a model containing one or more Model blocks if:

The referenced model is protected. Protected referenced models are encoded to
obscure their contents. This allows third parties to use the referenced model without
being able to view the intellectual property that makes up the model.

For more information, see “Reference Protected Models from Third Parties”
(Simulink).

The parent model or any of the referenced models returns an error when you set the
Configuration Parameters > Diagnostics > Connectivity > Element name
mismatch parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that
your model meets the bus element naming requirements imposed by some blocks.

The Model block uses asynchronous function-call inputs.

Any of the Model blocks in the model reference hierarchy creates an artificial
algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the
Minimize algebraic loop parameter to error so that Simulink reports an
algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box,
select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

Simulink will remove the algebraic loop if possible. If Simulink cannot eliminate
the artificial algebraic loop, highlight the location of the algebraic loop by opening
the Modeling tab and, in the Compile section, clicking Update Model.

5 FEliminate the artificial algebraic loop so that the software can analyze the model.
Break the loop with Unit Delay blocks so that the execution order is predictable.

Note For more information, see “Algebraic Loop Concepts” (Simulink).

The parent model uses the base workspace and the referenced model uses a data
dictionary.

3-21

3 Checking Compatibility with the Simulink Design Verifier Software

3-22

The parent model and the referenced model have mismatched data type override
settings. The data type override setting of the parent model and its referenced models
must be the same, unless the data type override setting of the parent model is Use
local settings. You can select the data type override settings for your model in the
Analysis menu, in the Fixed Point Tool dialog box under the Settings for selected
system pane.

The referenced model is a Model Reference block with virtual bus inports, and the
signals in the bus do not all have the same sample time at compilation. To make the
model compatible with Simulink Design Verifier analysis, convert the port to a
nonvirtual bus, or specify an explicit sample time for the port.

Support Limitations for Stateflow Software Features

Support Limitations for Stateflow Software Features

Simulink Design Verifier does not support the following Stateflow software features. Avoid
using these unsupported features in models that you analyze.

In this section...

“ml Namespace Operator, ml Function, ml Expressions” on page 3-23
“C or C++ Operators” on page 3-23
“C Math Functions” on page 3-23

“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on page
3-24

“Atomic Subchart Input and Output Mapping” on page 3-24
“Recursion and Cyclic Behavior” on page 3-25

“Custom C/C++ Code” on page 3-27

“Machine-Parented Data” on page 3-27

“Textual Functions with Literal String Arguments” on page 3-27

ml Namespace Operator, ml Function, ml Expressions

The software does not support calls to MATLAB functions or access to MATLAB
workspace variables, which the Stateflow software allows. See “Access MATLAB
Functions and Workspace Data in C Charts” (Stateflow).

C or C++ Operators

The software does not support the sizeof operator, which the Stateflow software allows.

C Math Functions

The software supports calls to the following C math functions:

e abs
e+ ceil
 fabs

3-23

3 Checking Compatibility with the Simulink Design Verifier Software

+ floor
+ fmod
* labs
+ ldexp

* pow (only for integer exponents)

The software does not support calls to other C math functions, which the Stateflow
software allows. If automatic stubbing is enabled, which it is by default, the software
eliminates these unsupported functions during the analysis.

For information about C math functions in Stateflow, see “Call C Library Functions in C
Charts” (Stateflow).

Note For details about automatic stubbing, see “Handle Incompatibilities with Automatic
Stubbing” on page 2-8.

Atomic Subcharts That Call Exported Graphical Functions
Outside a Subchart

The software does not support atomic subcharts that call exported graphical functions,
which the Stateflow software allows.

Note For information about exported functions, see “Export Stateflow Functions for
Reuse” (Stateflow).

Atomic Subchart Input and Output Mapping

If an input or output in an atomic subchart maps to chart-level data of a different scope,
the software does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-
level data of output, local, or parameter scope. For an atomic subchart output, this
incompatibility applies when the output maps to chart-level data of local scope.

3-24

Support Limitations for Stateflow Software Features

Recursion and Cyclic Behavior

The software does not support recursive functions, which occur when a function calls
itself directly or indirectly through another function call. Stateflow software allows you to
implement recursion using graphical functions.

In addition, the software does not support recursion that the Stateflow software allows
you to implement using a combination of event broadcasts and function calls.

Note For information about avoiding recursion in Stateflow charts, see “Avoid Unwanted
Recursion in a Chart” (Stateflow).

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is
repeated indefinitely. If your model has a chart with cyclic behavior, the software cannot
analyze it.

Note For information about cyclic behavior in Stateflow charts, see “Cyclic Behavior”
(Stateflow).

However, you can modify a chart with cyclic behavior so that it is compatible, as in the
following example.

The following chart creates cyclic behavior. State A calls state A1, which broadcasts a
Clear event to state B, which calls state B2, which broadcasts a Set event back to state
A, causing the cyclic behavior.

3-25

3 Checking Compatibility with the Simulink Design Verifier Software

Icn nd] Flear
B2
send(Set A);

If you change the send function calls to use directed event broadcasts so that the Set and
Clear events are broadcast directly to the states B1 and Al, respectively, the cyclic

{i] }

; A

' send(Clear, B);

; i:lear F"ﬂ

: [AE

N o
behavior disappears and the software can analyze the model.

:,,- ---------------- i ----------------------------- R

; A

i send(Clear, B.B1);

; i:lear F"'*'t

: [AE

N v

3-26

Note For information about the benefits of directed event broadcasts, see “Broadcast
Local Events to Synchronize Parallel States” (Stateflow).

Support Limitations for Stateflow Software Features

Custom C/C++ Code

If your model consists of custom C/C++ code, Simulink Design Verifier supports analysis
based on these settings:

» Ifyou enable import custom code and custom code analysis options, the software
supports custom C/C++ code for analysis. For more information, see “Import custom
code” (Simulink) and “Enable custom code analysis” (Simulink).

* Ifyou enable import custom code option and the custom code analysis option is set to
0ff, the model is compatible for analysis, but calls to the custom code are stubbed
during analysis.

» If the import custom code option is set to Off, the custom code is not supported and
the model is incompatible for analysis.

Machine-Parented Data

The software does not support machine-parented data (i.e., defined at the level of the
Stateflow machine), which the Stateflow software allows.

For more information, see “Best Practices for Using Data in Charts” (Stateflow).

Textual Functions with Literal String Arguments

The software does not support literal string arguments to textual functions in a Stateflow
chart.

3-27

3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for MATLAB for Code Generation

3-28

In this section...

“Unsupported MATLAB for Code Generation Features” on page 3-28
“Support Limitations for MATLAB for Code Generation Library Functions” on page 3-28

Unsupported MATLAB for Code Generation Features

Simulink Design Verifier does not support the following features of the MATLAB Function
block in the Simulink software and MATLAB functions in the Stateflow software. Avoid
using these unsupported features in models that you analyze with Simulink Design
Verifier.

Not Supported Description

Characters The software does not support characters, which
MATLAB for code generation allows.

C functions The software does not support calls to external C
functions, which MATLAB for code generation allows.

Extrinsic functions The software supports extrinsic functions only when
they do not affect the output of a MATLAB function.

Handle classes The software does not support handle classes in the
MATLAB Function block. The software does support
value classes.

Support Limitations for MATLAB for Code Generation Library
Functions

Simulink Design Verifier provides various levels of support for MATLAB for code
generation library functions. The software either fully or partially supports particular
functions. It does not support other functions.

If your model contains unsupported functions, you can turn on automatic stubbing, which
considers the interface of the unsupported functions, but not their behavior. However, if
any of the unsupported functions affect the simulation outcome, the analysis might
achieve only partial results. For details about automatic stubbing, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

Support Limitations for MATLAB for Code Generation

To achieve 100% coverage, avoid using unsupported MATLAB library functions in models

that you analyze.

The following table lists Simulink Design Verifier support for categories of library
functions in code generation from MATLAB:

» Software supports functions in that category, indicated by a dash (—).

* Software does not support functions in that category.

» Software supports the function in that category with limitations as specified.

For the complete listing of available functions, see “Functions and Objects Supported for

C/C++ Code Generation” (Simulink).

Function Category

Support Notes

Aerospace Toolbox functions

Not supported.

Arithmetic operator functions

Supported with

the following limitations:

mldivide (\)

Supports only scalar arguments.

mpower (™)

Supports only integer exponents.

mrdivide (/)

Supports only scalar arguments.

power (.7) Supports only integer exponents.
Bit-wise operation functions -
Casting functions Supported with the following limitations:
char Not supported.
typecast Not supported.
Communications Toolbox™ functions Not supported.
Complex number functions Supported.
Computer Vision Toolbox™ functions Not supported.
Data type functions -
Derivative and Integral functions Not supported.
Discrete math functions -
Error handling functions Supported with the following limitations:
assert Supported, but does not behave

like a Proof Objective block.

3-29

3 Checking Compatibility with the Simulink Design Verifier Software

Function Category

Support Notes

Exponential functions

Supported.

Filtering and convolution functions

Supported with the following limitations:

detrend Not supported.
Fixed-Point Designer functions Supported
Histogram functions Not supported.
Image Processing Toolbox™ functions Not supported.

Input and output functions

Interpolation and computation geometry

Supported with the following limitations:

cart2pol Not supported.
cart2sph Not supported.
pol2cart Not supported.
sph2cart Not supported.

Linear algebra Not supported.

Logical operator functions -

MATLAB Compiler™ functions Not supported.

Matrix and array functions

Supported with the following limitations:

angle Not supported.
cond Not supported.
det Not supported.
eig Not supported.
inv Not supported.
invhilb Not supported.
logspace Not supported.
lu Not supported.

3-30

Support Limitations for MATLAB for Code Generation

Function Category

Support Notes

norm Supported only when invoked
using the syntax

norm(A,p)

where p is either 1 or inf.

normest Not supported.
pinv Not supported.
planerot Not supported.
qr Not supported.
rank Not supported.
rcond Not supported.
subspace Not supported.

Nonlinear numerical methods Not supported.

Polynomial functions Not supported.

Relational operations functions -

Rounding and remainder functions -

Set functions —

Signal Processing functions in MATLAB Not supported.

Signal Processing Toolbox™ functions Not supported.

Special values

Supported with the following limitations:

rand Not supported.
randn Not supported.
Specialized math Not supported.

Statistical functions

String functions

Supported with the following limitations:

char Not supported.
ischar Not supported.
Trigonometric functions Not supported.

3-31

3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations and Considerations for S-Functions
and C/C++ Code

3-32

In this section...

“Enabling S-Functions in Simulink Design Verifier” on page 3-32
“Support Limitations for S-Functions and C/C++ Code” on page 3-32

“Considerations for Enabling S-Functions and C/C++ Code in Simulink Design Verifier”
on page 3-33

“Source Code Protection” on page 3-34

Enabling S-Functions in Simulink Design Verifier

Simulink Design Verifier supports test case generation for code generated with Embedded
Coder®. Simulink Design Verifier also supports error detection, test case generation, and
property proving for S-Functions that:

* The Legacy Code Tool generates, with
def.Options.supportCoverageAndDesignVerifier set to true.

* The S-Function Builder generates, with Enable support for Design Verifier selected
on the Build Info tab of the S-Function Builder dialog box.

» The function slcovmex compiles, with the option -sldv passed to the function when
compiling the S-function.

For more information on the three approaches, see “About C MEX S-Functions”
(Simulink).

Support Limitations for S-Functions and C/C++ Code
* Simulink Design Verifier does not support S-Functions or C/C++ code containing:

* Continuous states. Simulink Design Verifier does not analyze such code.

* Zero-crossing functions. Simulink Design Verifier ignores such code during
analysis.
* Constants that describe INF or NaN objects. Simulink Design Verifier considers

such code as containing floating-point overflow errors. Although Simulink Design
Verifier analysis cannot determine the type of overflow error for such cases, the

Support Limitations and Considerations for S-Functions and C/C++ Code

analysis can determine which lines of code introduce the incompatibility.
Polyspace® can provide more information on why your code contains floating-point
overflow errors.

You must specify that the signal elements entering the ports of S-Functions compiled
with slcovmex are contiguous. Use the SimStruct function
ssSetInputPortRequiredContiguous.

Considerations for Enabling S-Functions and C/C++ Code in
Simulink Design Verifier

When performing property proving or test generation analysis for models with enabled
S-Functions or C/C++ code generated with Embedded Coder, Simulink Design Verifier
assumes that the code contains no run-time errors. If the code contains run-time
errors such as division by zero, access to non-initialized variables or array out of
bounds, the property proving or test generation analysis can produce incorrect results.
Code that has been checked by Polyspace and is free of run-time errors provide
correct results in Simulink Design Verifier analysis.

To avoid incorrect results that are produced due to run-time errors, perform design
error detection analysis first, and then perform property proving or test generation
analysis.

If Simulink Design Verifier cannot determine the size of arrays in your code (for
instance for arrays that are dynamically allocated with non-constant size), Simulink
Design Verifier assumes an upper bound for the array. Ensure that the given upper
bound is appropriate.

If you do not enable Simulink Design Verifier support for an S-function, Simulink
Design Verifier stubs the S-function. With S-function support enabled, Simulink Design
Verifier analyzed the content of the S-function to get more detailed information.
Sometimes, Simulink Design Verifier internally stubs the S-function. Internal stubs can
be the result of different C/C++ constructs, such as:

* Calls to library functions (the library function is replaced by a stub).

* Complex pointer operations.

* Casts to or from incompatible or unknown pointer types.

Models containing such constructs are labeled Partially compatible.

3-33

3 Checking Compatibility with the Simulink Design Verifier Software

3-34

Source Code Protection

To analyze the contents of an S-function, information about the implementation of the S-
function, including information derived from the source code, are stored within the
shared object. Although this information is not directly accessible to users, consider
disabling Simulink Design Verifier support for S-Functions in models that are released
externally if the S-Functions contain sensitive source code.

See Also

“Configuring S-Function for Test Case Generation” | “Generate Test Cases for Embedded
Coder Generated Code” on page 7-32

Working with Block Replacements

* “What Is Block Replacement?” on page 4-2

* “Built-In Block Replacements” on page 4-6

* “Template for Block Replacement Rules” on page 4-8
“Block Replacements for Unsupported Blocks” on page 4-9

4 Working with Block Replacements

What Is Block Replacement?

4-2

Using Simulink Design Verifier, you can define rules to replace blocks automatically in
your model. For example, you can work around a block that is incompatible with the
software by creating a rule that replaces an unsupported Simulink block in your model
with a supported block that is functionally equivalent. Or, you can customize blocks for
analysis by creating a rule that adds constraints or objectives to particular blocks in your
model.

When performing block replacements, the software makes a copy of your model and
replaces blocks in the copy, without altering your original model. In this way, you can
easily customize a model for analysis.

The Simulink Design Verifier software replaces blocks automatically in a model using:

* Libraries of replacement blocks
* Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries of
replacement blocks and custom block replacement rules. Using block replacements, you
can

* Work around an incompatibility, such as the presence of unsupported blocks in your
model.
* Customize a block for analysis, such as:

* Adding constraints to its input signals
* Adding objectives to its output signals
* Eliminating the contents of a subsystem or Model block to simplify your analysis

Note You can use automatic stubbing as an alternative to block replacements to resolve
incompatibilities. Automatic stubbing replaces unsupported blocks with elements that
have the same interface. For more information, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

What Is Block Replacement?

Block Replacement Effects on Test Generation

Replacing blocks can affect test case generation if the replaced blocks share functionality
with other parts of your model. Before you replace blocks, understand functional
dependencies on those blocks or on shared signals. See “Highlight Functional
Dependencies” (Simulink Check). Replacement blocks can also affect other analysis
workflows such as property proving.

For example, you can customize a block for analysis using a replacement block that adds
objectives to an input signal. If another subsystem depends on that signal, the
replacement block effectively adds an objective for the subsystem.

In this example, the breakpoint range of ul in the 2-D Lookup Table is 5—7. The switch
threshold 8 falls outside the ul lookup table range.

2D Ty
(1) p| 1
>
2 * u2 out1
In2
2D Lockup
Table
(32 » =\
> ()
> — -
In4

Switch

Tests generated without replacing the 2D Lookup Table satisfy two objectives: that the
trigger is not greater than the Switch block threshold 8, and that the trigger is greater
than the Switch block threshold 8.

4-3

4 Working with Block Replacements

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

. Analysis
Type Model Item Description Time (sec) Test Case
1 Decision |Switch trigger = llluesholcl false (output 15) 1
— from 3rd wmput port)
P Decision |Switch trigger = .lluesholcl true (output 1s) >
— from 1st input port)

Test generation with block replacement returns a different analysis. The
blkrep rule lookup2D normal.m block replacement rule replaces the 2D Lookup
Table with a masked subsystem containing the 2D Lookup Table and a verification

subsystem.
2-D Tiu)
L1} | Ui
CO— > o
In2
2D Lockup Table

o
\—> m O

Verification Subsystem

The verification subsystem constrains the analysis within the breakpoint bounds of the
table. The additional constraints prevent generating tests that exercise the second
objective for the Switch block. The condition that the input signal In1 > 8is
unsatisfiable.

4-4

What Is Block Replacement?

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

S i Analysis
Type Model Item Description Toase: () Test Case
1 Decision 1Switch tngge-f = ﬂJIeshcld false (output is 0 i
R from 3rd input port)

Objectives Proven Unsatisfiable

Simulink Design Verifier proved that there does not exist any test case exercising these test objectives. This often
indicates the presence of dead-logic in the model. Other possible reasons can be inactive blocks in the model due to
parameter configuration or test constraints such as grven using Test Condition blocks. In rare cases. the
approximations performed by Simulink Design Verifier can make objectives impossible to achieve.

Type Aodel Item Description %nl;l:;::c} Test Case
2 Decision |Swiich RTIBEET = ﬂueshcld e fpralpet 0 n'a
from 1st input port)

4 Working with Block Replacements

Built-In Block Replacements

The Simulink Design Verifier software provides a set of block replacement rules and a
corresponding library of replacement blocks. Use these built-in block replacements when
analyzing models. They serve as examples that you can examine to learn how to create
your own block replacements.

The following table lists the factory default block replacement rules, available in the
matlabroot\toolbox\sldv\sldv\private folder. There are two implementations of
each factory-default block replacement rule. Rules whose file names end with _normal.m
replace blocks with Subsystem blocks. Rules whose file names end with configss.m
replace blocks with Configurable Subsystem blocks.

File Name Description
blkrep rule lookup normal.m A rule that replaces 1-D Lookup Table blocks with
_ an implementation that includes test objectives for
blkrep_rule_lookup_configss.m each breakpoint and interval specified by the
Breakpoints parameter.

blkrep rule lookup2D normal.m A rule that adds Test Condition/Proof Assumption

_ blocks to the input ports of 2-D Lookup Table
blkrep rule lookup2D configss.m blocks. Each Test Condition/Proof Assumption block

constrains signal values to the interval specified by
the corresponding breakpoint vector.

blkrep rule mpswitch2 normal.m A rule that adds a Test Condition/Proof Assumption
_ . block to the control input port of Multiport Switch
blkrep_rule mpswitch2 configss.m blocks whose Number of data ports parameter is

2. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 2] (or [0,
1] if the block uses zero-based indexing).

blkrep rule mpswitch3 normal.m A rule that adds a Test Condition/Proof Assumption
_ . block to the control input port of Multiport Switch
blkrep_rule mpswitch3 configss.m blocks whose Number of data ports parameter is

3. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 3] (or [0,
2] if the block uses zero-based indexing).

4-6

Built-In Block Replacements

File Name

Description

blkrep rule mpswitch4 normal.m

blkrep rule mpswitch4 configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter is
4. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 4] (or [0,
3] if the block uses zero-based indexing).

blkrep rule mpswitch5 normal.m

blkrep rule mpswitch5 configss.m

A rule that adds a Test Condition/Proof Assumption
block to the control input port of Multiport Switch
blocks whose Number of data ports parameter is
5. The Test Condition/Proof Assumption block
constrains signal values to the interval [1, 5] (or [0,
4] if the block uses zero-based indexing).

blkrep rule switch normal.m

blkrep rule switch configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring that each switch position be exercised
when the values of the first and third input ports
are different.

blkrep rule selector
IndexVecPort normal.m

blkrep rule selector
IndexVecPort configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Index vector
(port). The Test Condition/Proof Assumption block
constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size and Index mode
parameters.

blkrep rule selector
StartingIdxPort normal.m

blkrep rule selector
StartingIdxPort configss.m

A rule that adds a Test Condition/Proof Assumption
block to the index port of Selector blocks whose
Index Option parameter is Starting index
(port). The Test Condition/Proof Assumption block
constrains signal values to an interval whose
endpoints are derived from the values of the
Selector block's Input port size, Output size, and
Index mode parameters.

The library of replacement blocks that corresponds to the factory default rules is

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib

4 Working with Block Replacements

Template for Block Replacement Rules

4-8

To help you create block replacement rules, Simulink Design Verifier provides an
annotated template that contains a skeleton implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the copy to
implement the desired behavior for the rule you are creating. The comments in the
template provide hints about how to use each section.

Block replacement rules have the following restrictions:

* The function that represents a block replacement rule must include particular
callbacks. Use the block replacement rule template as a starting point for writing a
custom rule. (See “Block Replacements for Unsupported Blocks” on page 4-9.)

* The function that represents a block replacement rule must be on the MATLAB search
path.

Block Replacements for Unsupported Blocks

Block Replacements for Unsupported Blocks

In1

This example shows how to use Simulink® Design Verifier™ functions to replace
unsupported blocks and to how customize test vector generation for specific
requirements.

Model with an Unsupported Block

The example model includes a Switch block whose output is controlled by a Sqrt block.
For each switch position, the output of the model is calculated by a 1-D Lookup Table
block. For this model, the example concentrates on generating test cases that satisfy the
following:

1. Achieve 100% lookup table coverage.

2. Test vectors demonstrate each Switch block position when the values of its first and
third input ports differ.

open_system('sldvdemo sqrt blockrep');

Simulink Design Verifier
Block Replacements for Unsupported Blocks

1-D T{u)
W ’
1-0 Lookup Tahle
3) > |
In3 = > —"'(I.)
Ju > | outi
In4 sait
@ :min > —ﬂ
Inz2

Copyright 20062011 The Mathiodos, Inc.

4-9

4 Working with Block Replacements

4-10

Checking Model Compatibility

Since the sqrt function is not supported, this model is partially compatible with Simulink
Design Verifier.

sldvcompat('sldvdemo sqrt blockrep');

Entering Stage: 'SLDV Compatibility Analysis' for Model: 'sldvdemo sqrt blockrep

Checking compatibility of model 'sldvdemo sqrt blockrep'

Compiling model... done

Checking compatibility... done

Warning: Simulink Design Verifier has only partial support for some elements of
the model: 'sldvdemo sqrt blockrep' is partially compatible with Simulink Design
Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed
out during analysis. The results of the analysis might
be incomplete.

Warning: Block 'sldvdemo sqrt blockrep/Sqrt' is configured to operate as
function sqrt. Simulink Design Verifier does not support this function.

'sldvdemo _sqrt blockrep' is partially compatible with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed
out during analysis. The results of the analysis might
be incomplete.

Exiting Stage: 'SLDV Compatibility Analysis' for Model: 'sldvdemo sqrt blockrep'

Creating a Custom Block Replacement Rule to Work Around the Incompatibility

This model can be analyzed for test generation by automatically stubbing the
unsupported Sqrt block. However, test cases cannot be generated for the Switch block
positions because Simulink Design Verifier does not understand the Sqrt block and the
output of this block is effecting the Switch block. Since you want test cases for the Switch
block, you need to replace the Sqrt block with a supported block that is functionally
equivalent. The library block sldvdemo custom blockreplib shown below constrains
the input signal to the range [0 10000] and approximates the sqrt function by using a
1-D Lookup Table block.

Block Replacements for Unsupported Blocks

The table data was calculated to match the values of sqrt, with a maximum error of 0.2
in the range [0 10000]. Refer to the mask initialization pane of the block Sqrt_Approx
in the library sldvdemo_custom_blockreplib for the values of the lookup table data.

The replacement rule is in defined the MATLAB-file
sldvdemo custom blkrep rule sqrt.m. Since the replacement block
sldvdemo custom blockreplib for the Sqrt block is only valid for double or single
types, this rule ensures that these conditions are satisfied before allowing a block
replacement.

function rule = sldvdemo custom blkrep rule sqrt

rule = SldvBlockReplacement.blockreprule;
rule.fileName = mfilename;

rule.blockType = 'Sqrt';

rule.replacementPath sprintf('sldvdemo_custom blockreplib/Sqrt Approx');

rule.replacementMode = 'Normal';
parameter.QutMin = '$original.OutMin$"';
parameter.QutMax = '$original.OutMax$"';

parameter.QutDataTypeStr = '$original.OutDataTypeStr$';
rule.parameterMap = parameter;

rule.isReplaceableCallBack = @replacementTestFunction;
end
function out = replacementTestFunction(blockH)

out = false;
acceptedOutDataTypeStr = {'double', 'single’, ...
'"Inherit: Inherit via back propagation',...
'"Inherit: Same as input'};
I = strmatch(get param(blockH, 'OutDataTypeStr'),acceptedOutDataTypeStr, 'exact')
if ~isempty(I)

portDataTypes = get param(blockH, 'CompiledPortDataTypes');
out = any(strcmp(portDataTypes.Inport,{'double', 'single'})) &&
strcmp(portDataTypes.Inport,portDataTypes.Outport);

end
end

4-11

4 Working with Block Replacements

4-12

open_system('sldvdemo custom blockreplib');
open_system('sldvdemo custom blockreplib/Sqrt Approx/1-D Lookup Table');

{10, 10000 n-D T{u)

- — i — (1)
In Ot

1-D Lookup Table

o
Configuring Simulink® Design Verifier™ Options for Block Replacement

You will run Simulink Design Verifier in test generation mode with block replacements
enabled. In order to generate test cases for positions of Switch block, you must use the
custom replacement rule sldvdemo custom blkrep rule sqrt.m.

Since you are also interested in lookup table coverage, you need the built-in block
replacement blkrep rule lookup normal.m, which inserts test objectives for each
interval and breakpoint value for a 1-D Lookup Table block. Moreover, you need the built-
inrule blkrep rule switch normal.m, which requires that each switch position be
exercised when the values of the first and third input ports differ. Please refer to the
Block Replacement in the Simulink Design Verifier documentation for a list of all built-in
replacement rules.

The analysis will run for a maximum of 30 seconds and produce a harness model. Report
generation is also enabled. Other Simulink Design Verifier options are set to their default
values.

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.MaxProcessTime = 30;

opts.BlockReplacement = 'on';

opts.BlockReplacementRulesList = ['sldvdemo custom blkrep rule sqrt.m,’
"blkrep rule lookup normal.m,'...
"blkrep rule switch normal.m'];

opts.SaveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';
opts.SaveReport = 'on';

Block Replacements for Unsupported Blocks

ﬁopyrightZIIIB-EDﬂ The hathifores, Inc.

NMC O sant b

Sqri_Approx

Executing Test Generation with Block Replacements

The sldvrun function analyzes the model using the settings defined in a sldvoptions
object opts. The generated report includes a chapter summarizing block replacements
performed on the model.

[status,fileNames] = sldvrun('sldvdemo sqrt blockrep', opts, true);

Sze-Type

Test Case 1 In1 >
'_',-/\““ Inz —-.
In3 fb——
[e ———

Inputs

M=
Lac
Text

Test Case Explanation

In2

In2

In<t

Inq sldwdemo_sqrt_blodkrep

Out1

——— (D)
o

Test Unit

4-13

4 Working with Block Replacements

B signal Builder (sldvdemo_sqrt_blockrep_hamess/Inputs) (===
File Edit Group Signal Axes Help w

EH 2R oo [—~THEFREE o0 ow | G R E
| .
Active Gruup:J Test Case 1 = ‘ @' = -

A e B e L L
0 Int [‘ ¢ ‘ + : |

R S S, Y SETEEEEE EErEEEEE g:# IRETRRTISS :
A
I i i I
1] = : : : : f
2|:||:|
CAOD e B R SR RTRTART T
BOgk L e e T
500 ? ' ! '

aoo0 B o T
2000 = e T RERRRPe LR TR STPPTI
000 = PP ETRRRE
Op——- i I i 1 | i
0 0z 0.4 0E& 0. 1 1.2

Time (sec)

LLeft: Point Right'Point
: InZ { shown)
Name: (In1 T T In3 { shown)
4 Ind {showm)
Index: 1 - W A H
ok Il (#1) [YMin ¥Max]

Executing Tests in the Harness Model

Enable the lookup table coverage metric and then run the test cases using the harness
model. You can also execute the suite of tests by clicking the "Run all" button on the

4-14

Block Replacements for Unsupported Blocks

Signal Builder dialog box after enabling lookup table coverage from the "Analysis" >
"Coverage" > "Settings" menu.

The coverage report shown below indicates that you can reach 100% lookup table
coverage with the test vectors that Simulink Design Verifier generated.

[harnessModelPath,harnessModel] = fileparts(fileNames.HarnessModel);

set param(harnessModel, 'covMetricSettings', 'dcmte');
sldvdemo playall(harnessModel);

4-15

4 Working with Block Replacements

u Signal Builder (sldvdemo_sqrt_blockrep_harness/Inputs) (===
File Edit Group Signal Axes Help w

SH R oo ~T0EFREE > 1o |
| .
Active Gruup:J Test Case 1 = ‘ @' = -

A e B e L L
0 Int [‘ ¢ ‘ + : |

R S S, Y SETEEEEE EErEEEEE g:# IRETRRTISS :
A
I i i I
1] = : : : : f
2|:||:|
CAOD e B R SR RTRTART T
BOgk L e e T
500 ? ' ! '

3D|:||:|_..|n4..
0 0 ERRR TR PR T RERRRPe R ERIERRET e
000 =
Op——- i I i 1 | i
0 0z 0.4 0E& 0. 1 1.2

Time (sec)

LLeft: Point Right'Point
P InZ { showm)
Name: (In1 T T In3 { shown)
= Ind {showm)
Index: 1 - W A H
Click to select signal In1 (#1) [YMin ¥hax]

Clean Up

To complete the example, close all models and remove the files that Simulink Design
Verifier generated.

4-16

Block Replacements for Unsupported Blocks

close system('sldvdemo custom blockreplib');
close system(fileNames.HarnessModel,0);

close system(fileNames.BlockReplacementModel,0);
close system('sldvdemo sqrt blockrep',0Q);
delete(fileNames.HarnessModel);
delete(fileNames.BlockReplacementModel) ;
delete(fileNames.DataFile);

4-17

Specifying Parameter
Configurations

* “Parameter Constraint Values” on page 5-2

* “Define Constraint Values for Parameters” on page 5-5

» “Specify Parameter Constraint Values for Full Coverage” on page 5-12

* “Store Parameter Constraints in MATLAB Code Files” on page 5-24

* “Define Constraint Values for Parameters in MATLAB Code Files” on page 5-27

* “Using Command Line Functions to Support Changing Parameters” on page 5-32

+ “Parameter Identification” on page 5-46

+ “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-47

5 Specifying Parameter Configurations

Parameter Constraint Values

5-2

In this section...

“Parameter Configuration for Analysis” on page 5-2
“Data Types in Parameter Configurations” on page 5-3
“Parameters in Variant Subsystems” on page 5-3

Parameter Configuration for Analysis

Simulink Design Verifier software can treat parameters in your model as variables during
its analysis. For example, suppose you specify a variable that is defined in the MATLAB
workspace as the value of a block parameter in your model. You can instruct Simulink
Design Verifier to use additional values for that parameter in its analysis.

This allows you to, for example:

* Extend the results of design error detection or property proving analysis to consider
the impact of additional parameter values.

* Generate comprehensive test cases for situations in which parameter values must vary
to achieve more complete coverage results. For more information, see “Specify
Parameter Constraint Values for Full Coverage” on page 5-12.

If you place a constraint on a parameter in your model, during analysis that parameter
takes only your specified constraint value or values. A group of constraints on parameters
in the same model is also called a parameter configuration.

Use the Parameter Table to manage constraints on your model parameters for analysis. In
the Parameter Table, you can:

* Autogenerate value ranges for parameters in your model. See “Autogenerate
Parameter Constraint” on page 5-15.

* Enter your own value ranges for parameters in your model. See “Define Constraint
Values for Parameters” on page 5-5.

+ Highlight objects in your model that have parameters configured to act as variables
during analysis. See “Highlight Constrained Parameters in Model” on page 5-10.

» Import and export parameter configurations from MATLAB code files. See “Store
Parameter Constraints in MATLAB Code Files” on page 5-24.

Parameter Constraint Values

Data Types in Parameter Configurations

Consider the following issues related to data types when constraining parameter values:

* “Structures as Parameters not Supported” on page 5-3
* “Parameters Converted to Fixed Point in the Model” on page 5-3

* “Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations”
on page 5-3

* “Complex Data as Parameters not Supported” on page 5-3
Structures as Parameters not Supported

If the data type of a parameter in the MATLAB workspace is struct, Simulink Design
Verifier does not support generating values for that parameter during the analysis.

Parameters Converted to Fixed Point in the Model

If your model references a base workspace parameter whose data type is auto, single,
or doub'le, and the model converts that parameter to a fixed-point data type, you must
define the constraints for that parameter according to its fixed-point type.

Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations
For a parameter defined as Simulink.Parameter or an inherited class of
Simulink.Parameter whose data type is auto, if the parameter is referenced by
multiple locations with different data types, Simulink Design Verifier cannot generate
values for that parameter during the analysis.

Complex Data as Parameters not Supported

If the data type of a parameter in the MATLAB workspace is complex, Simulink Design
Verifier does not support generating values for that parameter during the analysis.

Parameters in Variant Subsystems

Parameters can be used to select variants in Variant Subsystem blocks. These parameters
are listed in the Parameter Table. However, Simulink Design Verifier only supports
analyzing the active variant.

5 Specifying Parameter Configurations

See Also

More About

. “Specify Parameter Constraint Values for Full Coverage” on page 5-12

. “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-
47

Define Constraint Values for Parameters

Define Constraint Values for Parameters

In this section...

“Find Parameters and Autogenerate Constraints” on page 5-6
“Edit Parameter Constraints” on page 5-9

“Highlight Constrained Parameters in Model” on page 5-10

Using the Parameter Table, you can find and autogenerate constraints for parameters in
your model. This example uses the following model, which contains Gain and Constant
parameters defined as m and b, respectively.

double double inte ints
@_pb_. Conver)

In1 Ot

Zain

b |Constant

[Variables mand b are defined in the MATLAB workspace. .

The model callback function PreLoadFcn defines m and b in the MATLAB workspace.

3-5

5 Specifying Parameter Configurations

i =)

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main | Callbacks | History | Description

Model callbacks Model pre-load function:

*

PreLoadFcn m= 5

- PostLoadFcn

- InitFen b = Simulink.Farameter;

- StartFcn b.DataType = 'intd';

- PauseFcn b.value = int8(5);

~ ContinueFcn

- StopFon

- PreSaveFcn

- PostSaveFcn

- CloseFcn

oK] [Cancel] [Help Apply

When the model opens:

* missettob.
* bisaSimulink.Parameter object of type int8 whose value is set to 5.

Find Parameters and Autogenerate Constraints

This example shows how to specify values or ranges of values used for model parameters
during Simulink Design Verifier analysis.

Define Constraint Values for Parameters

Open the Parameter Table.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for the
mode settings, click Settings.

In the Configuration Parameters dialog box, select Design Verifier > Parameters.
Enable the Parameter Table.

In the Parameters pane, select Enable parameter configuration and Use parameter
table.

Find parameters that can be constrained for analysis.

At the bottom of the Parameter Table, click Find in Model. The Parameter Table
searches your model for parameters that can be configured and loads them in the table.

When possible, the Parameter Table autogenerates constraint values for parameters. You
can use these autogenerated values or specify your own constraint.

In this example, in the Parameter Table, rows for model parameters m and b appear.

Parameter table

I Enable I l Disable I I Clear I l Highlight in Model I

Use Name Constraint Value Min Max Model Element
o 5 ex_defining_param_configurations_errwarn/Constant
[l 5 ex_defining_param_configurations_errwarn/Gain

Each row represents a parameter configuration. You can edit the parameter’s constraint
value(s) in the field under Constraint. To use your specified parameter configuration in
analysis, select the check box in the field under Use. The following table provides more

details about these and other columns in the Parameter Table.

5-7

5 Specifying Parameter Configurations

For parameter in row, the column... Shows...

Use Whether specified constraint for parameter
is used in analysis.

To include parameter configuration in
analysis, select the check box. To exclude
parameter configuration from analysis,
clear the selection.

Name Name of parameter.

Constraint Autogenerated or user-specified constraint
value(s) for parameter.

To change the specified constraint value(s),
double-click in this field and enter new
constraint value(s).

Value Value of parameter. If the parameter is
defined in a Simulink data dictionary that is
linked to the model, the column shows the
value of the parameter in the data
dictionary. Otherwise, it shows the value of
the parameter in the base workspace.

Min Specified minimum value for parameter, if
parameter is of type
Simulink.Parameter and has a specified
minimum value.

Max Specified maximum value for parameter, if
parameter is of type
Simulink.Parameter and has a specified
maximum value.

Model Element Path to model component(s) where
parameter is used.

Note If you use a MATLAB variable from a data dictionary as a model parameter, SLDV
analysis does not consider the parameter as tunable. If you want the parameter to be
tunable for the analysis, use a Simulink.Parameter object for the parameter. To create
a Simulink.Parameter object in the data dictionary:

Define Constraint Values for Parameters

1 In the Model Explorer, on the Model Hierarchy pane, select the workspace under
the data dictionary that contains your MATLAB variable.

2 Select Add > Simulink Parameter. You see a new variable titled Param in the
workspace.

3 Rename the variable. Assign the same data type as the original MATLAB variable.
In your model, use the variable that you just created as your parameter.

Edit Parameter Constraints

For each parameter you want to treat as a variable during analysis, specify constraint
values.

In the Parameter Table, in the Constraint column, double-click the field for the
parameter you want to constrain. Enter your constraint values.

For this example:

* For parameter b, specify the value range [4, 10].
* For parameter m, specify the value 3.

Parameter table

’ Enable] ’ Disable] [Clear] [Highlight in Model]

Use Name Constraint Value Min Max Model Element
7] b [4,10] ex_defining_param_configurations_errwarn/Constant
9 m PR > ||| pem._comouons srwar/Gar

To enable a parameter configuration for analysis, click to select the row that corresponds
to the configured parameter. Click Enable.

To enable multiple parameter configurations at once, shift-click to select multiple rows,
and click Enable.

To exclude parameter configurations from analysis, click to select the row that
corresponds to the configured parameter. Click Disable.

When you disable a parameter configuration, the specified constraint for this parameter is
not used in analysis.

5-9

5 Specifying Parameter Configurations

To disable multiple parameter configurations at once, shift-click to select multiple rows,
and click Disable.

To exclude a parameter configuration from analysis and delete its specified constraint,
click to select the row that corresponds to the configured parameter. Click Clear.

The Parameter Table clears the specified constraint for the parameter, and the parameter
configuration is excluded from analysis.

To clear multiple parameter configurations at once, shift-click to select multiple rows, and
click Clear.

Highlight Constrained Parameters in Model

Highlight model components that use the parameters for which you have specified
constraints.

Select the parameter(s) you want to highlight in the model.

To select a parameter, click anywhere inside the Name or Constraint columns for either
parameter. Shift-click to select multiple parameters.

Parameter table

[Enable] [Disable] [Clear] [Highlight in Model]

Use |

<<

5-10

Name | Constraint |Va|ue Min Model Element

Click Highlight in Model.

In the Simulink Editor, model components that use the selected parameters are
highlighted.

Define Constraint Values for Parameters

double double intl ntl

amver

In1 . Ot
Zain

Constant

Variables m and b are defined in the MATLAB workspace. '

5-11

5 Specifying Parameter Configurations

Specify Parameter Constraint Values for Full Coverage

In this section...

“About This Example” on page 5-12

“Construct Example Model” on page 5-13
“Parameterize Constant Block” on page 5-14
“Preload Workspace Variable” on page 5-14
“Autogenerate Parameter Constraint” on page 5-15
“Analyze Example Model” on page 5-17

“Simulate Test Cases” on page 5-19

About This Example

This example describes how to create and analyze a simple Simulink model, for which you
generate test cases that achieve decision coverage. However, in this example, achieving
complete decision coverage is possible only when Simulink Design Verifier treats a
particular block parameter as a variable during its analysis. This example explains how to
specify parameter configurations for use with the analysis.

The following workflow guides you through the process of completing this example.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 5-13

2 Specify a variable as the value of |“Parameterize Constant Block” on page 5-
a Constant block parameter. 14

3 Constrain the value of the “Autogenerate Parameter Constraint” on
variable that the Constant block |page 5-15
specifies.

4 Generate test cases for your “Analyze Example Model” on page 5-17
model and interpret the results.

5 Simulate the test cases and “Simulate Test Cases” on page 5-19
measure the resulting decision
coverage.

5-12

Specify Parameter Constraint Values for Full Coverage

Construct Example Model

Construct a simple Simulink model to use in this example:

Create an empty Simulink model.
2 Copy the following blocks into the empty Simulink Editor:

* From the Sources library:

* Two Inport blocks to initiate the input signals

* A Constant block to control the switch
* From the Signal Routing library: A Multiport Switch block to provide simple logic
* From the Sinks library: An Outport block to receive the output signal

3 Double-click the Multiport Switch block to access its dialog box and specify its
Number of data ports option as 2.

4 Connect the blocks so that your model looks like the following.

1 »—
Constant
D > &
It Out
In2
Multiport
Switch

5 On the Simulation tab, click the arrow on the right of the Prepare section and click
Model Settings.

6 In the Configuration Parameters dialog box, select the Solver. Under Solver
selection, set the Type option to Fixed-step, and then set the Solver option to
discrete (no continuous states).

In the Diagnostics pane, set Automatic solver parameter selection to none.
Click OK to apply your changes and close the Configuration Parameters dialog box.
Save your model as ex_defining params_example for use in the next procedure.

5-13

5 Specifying Parameter Configurations

Parameterize Constant Block

Parameterize the Constant block in your model by specifying a variable as the value of the
Constant block's Constant value parameter:

1 Double-click the Constant block.

2 In the Constant value box, enter A.

3 Click OK to apply your change and close the Constant block parameter dialog box.
4 Save your model.

Preload Workspace Variable

Preload the value of the MATLAB workspace variable A referenced by the Constant block:

1 On the Modeling tab, select Model Settings > Model Properties.
2 Click the Callbacks tab.
3 Inthe PreLoadFcn, enter:

A = int8(1);

4 Click OK to close the Model Properties dialog box and save your changes.
Close your model.

6 Open your model.

When you open the model, the PreLoadFcn defines a variable A of type int8 whose

value is 1.
ini
[|
A i |
Constant
1 double
1 L e {1
C e)
In1 Cutl
double *, 2
(Er——
In2
Mutiport
Switch

5-14

Specify Parameter Constraint Values for Full Coverage

Autogenerate Parameter Constraint

Use the Parameter Table to constrain variable A to specified values.

1

S AW

On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings.

In Configuration Parameters dialog box, select Design Verifier > Parameters.
Select Enable parameter configuration.

Select Use parameter table.

Click Find in Model.

The Parameter Table is populated with parameters from your model. When possible,
it autogenerates constraint values for each parameter, depending on the data type
and location of the parameter in the model.

In this case, a row appears for the parameter A that you defined. The table row for A
displays the following information:
* In the Name column, the parameter name (A).

* In the Constraint column, the constraint specified on parameter A. The
Parameter Table autogenerates the constraint values {1, 2}.

* In the Value column, the value of A in the base workspace. This value is 1.

* Inthe Model Element column, the model component in which A resides
(ex defining params_example/Constant).

* In the Use column, a check box indicating whether the specified constraint values
in the table are configured for analysis.

5-15

5 Specifying Parameter Configurations

Parameter table

[Enable] [Disable] ’ Clear] ’ Highlight in Model l
Parameter table Min Max Model Element
il A {1, 2} -- ex_defining_params_example/Constant

| Findin Model | | Add from File... | [Export to File...|

7 In the Parameter Table, in the row for parameter A, make sure that you select the
Use check box.

When you enable this parameter configuration, during Simulink Design Verifier
analysis, the parameter A takes only the int8 values 1 and 2.
In the Configuration Parameters dialog box, click OK.

9 Save your model.

5-16

Specify Parameter Constraint Values for Full Coverage

Analyze Example Model

Analyze the model using the parameter configuration you just created, and generate the
analysis report:

1 On the Design Verifier tab, in the Mode section, select Test Generation. Click
Generate Tests.
Simulink Design Verifier analyzes your model to generate test cases.

2 When the software completes its analysis, in the Simulink Design Verifier Results
Summary window, select Generate detailed analysis report.

The software displays an HTML report named
ex_defining params_example_ report.html.

Keep the Results Summary window open for the next procedure.
3 In the Simulink Design Verifier report Table of Contents, click Test Cases.
Click Test Case 1 to display the subsection for that test case.

5-17

5 Specifying Parameter Configurations

5-18

Test Case 1

Summary

Length: 0 second (1 sample period)

Objectives |

Satisfied:

Objectives

Step Time Model Item Objectives

1 0 Multiport Switch integer input value = 1 (output is from input

port 1)
Generated Parameter Values

Parameter Value
A 1

Generated Input Data

Time |0
Step 1
Inl -
In2 -

This section provides details about Test Case 1 that Simulink Design Verifier

generated to satisfy a coverage objective in the model. In this test case, a value of 1
for parameter A satisfies the objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.

Specify Parameter Constraint Values for Full Coverage

Test Case 2
Summary
Length: 0 second (1 sample period)
Objectives |
Satisfied:
Objectives
Step Time Model Item Objectives
i i T =% i
1 0 Multiport Switch integer input value = *_2 (output is from

input port 2)
Generated Parameter Values

Parameter Value
A 2

Generated Input Data

Time |0
Step (1
Inl -
In2 -

This section provides details about Test Case 2, which satisfies another coverage

objective in the model. In this test case, a value of 2 for parameter A satisfies the
objective.

Simulate Test Cases

Simulate the generated test cases and review the coverage report that results from the
simulation:

5-19

5 Specifying Parameter Configurations

1 In the Simulink Design Verifier Results Summary window, select Create harness
model.

The software creates and opens a harness model named
ex _defining params_example harness.

2 The block labeled Inputs in the harness model is a Signal Builder block that contains
the test case signals. Double-click the Inputs block to view the test case signals in the
Signal Builder block.

5-20

Specify Parameter Constraint Values for Full Coverage

u Signal Builder (ex_defining_params_example_harness/Inputs) EI@
File Edit Group Signal Axes Help E

FH| 2R oo | —=TR|E)EFREE » 0o | § M
Active Group; | Test Case 1 v: @, | = E]
1 e B
In1 : ; ; : ; . . ; : |
0 i ¢
) 1) AR s deieees O Lemeaes e R R bemmiaeees s 4
P E— I — W W W I
In2 i i . i ; . : . i i
) Sy

0 i
06] A S S] AR SR S
1 | | | | | i | | | |
0 0.1 0.2 0.3

Lett Pormt

InZz {shown)
Name: In1 T: iE
Index: 1 -] . [e
ok In1 (#1) [¥Min ¥Max]
3

#
In the Signal Builder dialog box, click the Run all button >

The Simulink software simulates each of the test cases in succession, collects
coverage data for each simulation, and displays an HTML report of the combined
coverage results at the end of the last simulation.

5-21

5 Specifying Parameter Configurations

4 In the model coverage report, review the Summary section:

Summary

Model Hierarchy/Complexity:

D1
1. ex defining params example harness 2 100% e——
2. Test Unit (copied from ex defining params example) 1 100% —

This section summarizes the coverage results for the harness model and its Test Unit
subsystem. Observe that the subsystem achieves 100% decision coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5-22

See Also

2. SubSystem block "Test Unit (copied from ex defining param..."

Parent: /ex_defining_params_example harness
Metric Coverage (this object) Coverage (nc.
8] descendants)
Cyclomatic Complexity 0 1
Decision (D1) NA 100% (2/2) decision outcomes

MultiPortSwitch block "Multiport Switch"

ex defining params example harmess/Test Unit (copied from

Parent: ex defining params example)
Metric Coverage

Cyclomatic Complexity 1

Decision (D1) 100% (2/2) decision outcomes

Decisions analyzed:

integer input value 100%
=1 (output is from input port 1) 2/4
= *.2 (output is from input port 2) 2/4

This section reveals that the Multiport Switch block achieves 100% decision coverage
because the test cases exercise each of the switch pathways.

See Also
“Extend Existing Test Cases After Applying Parameter Configurations” on page 5-47

5-23

5 Specifying Parameter Configurations

Store Parameter Constraints in MATLAB Code Files

5-24

In this section...

“Export Parameter Constraints to File” on page 5-24
“Import Parameter Constraints from File” on page 5-26

You can use the Parameter Table to manage constraints on your model parameters for
analysis. If you place a constraint on a parameter in your model, during analysis that
parameter takes only your specified constraint value or values. A group of constraints on
parameters in the same model is also called a parameter configuration. You can store
groups of parameter constraints in a MATLAB code file called a parameter configuration
file. For more information on configuring parameters for Simulink Design Verifier, see
“Define Constraint Values for Parameters” on page 5-5.

To enable parameter configuration, on the Design Verifier tab, in the Prepare section,
from the drop-down menu for the mode settings, click Settings. In the Configuration
Parameters dialog box, on the Design Verifier > Parameters pane, select Enable
parameter configuration.

Export Parameter Constraints to File

Using the Parameter Table, you can export parameter constraint values to a MATLAB
code file. If you later want to use the same parameter configuration in a different analysis,
you can import your previously specified parameter constraint values from the MATLAB
code file.

To export parameter constraint values to a file:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings. In the Configuration Parameters dialog box, select
Design Verifier > Parameters.

The Parameter Table shows specified constraint values for parameters in your model,
as in the following example screen shot.

Store Parameter Constraints in MATLAB Code Files

Parameter table

[Enable] [Disable] [Clear] [Highlight in Model
Use Name Constraint Value Min Model Element
VI param_01 {0, 1} _-- ex_many_params/Constant
=] param_02 {0, 1} ex_many_params/Constant2
il param_03 {0, 1} 0 ex_many_params/Constantl
[l param_04 {0, 1} 2 ex_many_params/Constant3
’ Find in Model] ’ Add from File...] ’Export to File...

2 Click Export to File.

The Parameter Configuration File saves the current parameter configurations toa .m
file with the name you specify. Parameters that do not have the Use check box
enabled appear as commented lines in the parameter configuration file.

In the example shown in the previous step, the parameter configuration file contains
the following code:

function params
params.param 01
% params.param 02 =
params.param 03 =

% params.param 04 = {0,

ex_many params_config
{0, 1};

{0, 01};

{0, 1};

1};

5-25

5 Specifying Parameter Configurations

5-26

Import Parameter Constraints from File

If you defined parameter configurations for analysis in a release prior to R2014a, you can
import corresponding MATLAB files and manage these parameters in the Parameter
Table.

To import parameter constraints from a MATLAB code file:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings. In the Configuration Parameters dialog box, select
Design Verifier > Parameters.

2 Click Add from File. Choose a parameter configuration file.

The Parameter Table loads specified parameter constraints from the code, excluding
code comments, from the file. If you specify a constraint for a parameter and then
load a parameter configuration file containing constraint specification for the same
parameter, the constraint specified in the file overwrites the preexisting constraint in
the table.

Simulink Design Verifier provides an example parameter configuration file for the
example model sldvdemo _param_identification:

matlabroot/toolbox/sldv/sldvdemos/sldvdemo param ident config.m

See Also

More About

. “Parameter Identification” on page 5-46

Define Constraint Values for Parameters in MATLAB Code Files

Define Constraint Values for Parameters in MATLAB
Code Files

In this section...

“Template Parameter Configuration File” on page 5-27

“Syntax in Parameter Configuration Files” on page 5-27

To specify parameters as variables for analysis, you can use the Parameter Table or define
parameter configurations in a MATLAB code file. You can also export parameter
configuration files from the Parameter Table. For more information, see “Store Parameter
Constraints in MATLAB Code Files” on page 5-24.

This example shows how to define parameter configurations in a MATLAB code file. For
an example that shows how to define these parameter configurations using the Parameter
Table, see “Define Constraint Values for Parameters” on page 5-5.

Template Parameter Configuration File

The Simulink Design Verifier software provides an annotated template that you can use as
a starting point:

matlabroot/toolbox/sldv/sldv/sldv_params template.m

To create a parameter configuration file, make a copy of the template and edit the copy.
The comments in the template explain the syntax for defining parameter configurations.

To associate the parameter configuration file with your model before analyzing the model,

in the Configuration Parameters dialog box, on the Design Verifier > Parameters pane,
enter the file name in the Parameter configuration file field.

Syntax in Parameter Configuration Files

Specify parameter configurations using a structure whose fields share the same names as
the parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value parameters, m
and b, which appear in the following model:

5-27

5 Specifying Parameter Configurations

5-28

doublke doubke antE intd
@_;\D_. Conver D
In

. Ot 1
Gain

b |Constnt

[Variables m and b are defined in the MATLAB workspace. .

The PreLoadFcn callback function defines m and b in the MATLAB workspace when you
open the model:

* missettob.

bisa Simulink.Parameter object of type int8 whose value is set to 5.

Define Constraint Values for Parameters in MATLAB Code Files

i =)

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main | Callbacks | History | Description

Model callbacks Model pre-load function:

*

PreLoadFcn m= 5

- PostLoadFcn

- InitFen b = Simulink.Farameter;

- StartFcn b.DataType = 'intd';

- PauseFcn b.value = int8(5);

~ ContinueFcn

- StopFon

- PreSaveFcn

- PostSaveFcn

- CloseFcn

oK] [Cancel] [Help Apply

In your parameter configuration file, specify constraints for m and b:

params.b = int8([4 10]);
params.m = {};

This file specifies:

* b is an 8-bit signed integer from 4 to 10. The constraint type must match the type of
the parameter b in the MATLAB workspace, int8, in this example.

5-29

5 Specifying Parameter Configurations

5-30

* mis not constrained to any values.

Specify points using the Sldv.Point constructor, which accepts a single value as its
argument. Specify intervals using the Sldv.Interval constructor, which requires two
input arguments, i.e., a lower bound and an upper bound for the interval. Optionally, you
can provide one of the following values as a third input argument that specifies inclusion
or exclusion of the interval endpoints:

* '()' — Defines an open interval.

¢ '[]1' — Defines a closed interval.

¢ '(]' — Defines a left-open interval.
* '[)' — Defines a right-open interval.

Note By default, Simulink Design Verifier considers an interval to be closed if you omit
this argument.

The following example constrains m to 3 and b to any value in the closed interval [0, 10]:

params.m
params.b

Sldv.Point(3);
Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead specify single
values or two-element vectors. For example, you can alternatively specify the previous
example as:

params.m
params.b

0 10];

Note To indicate no constraint for an input parameter, specify params.m = {} or
params.m = []. The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell array. In this case,
the analysis combines the constraints using a logical OR operation.

The following example constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]:

{3, 5};
[0 10];

params.m
params.b

Define Constraint Values for Parameters in MATLAB Code Files

You can specify several sets of parameters by expanding the size of your structure. For
example, the following example uses a 1-by-2 structure to define two sets of parameters:

{3, 5};
[0 10];

params(1l).m
params(1l).b

params(2).

m {12, 15, Sldv.Interval(50, 60, '()')};
params(2).b

5;

The first parameter set constrains m to either 3 or 5 and constrains b to any value in the
closed interval [0, 10]. The second parameter set constrains m to either 12, 15, or any
value in the open interval (50, 60), and constrains b to 5.

5-31

5 Specifying Parameter Configurations

Using Command Line Functions to Support Changing
Parameters

5-32

This example shows how to use Simulink® Design Verifier™ command-line functions to
generate test data that incorporates different parameter values.

Controller Model with an Adjustable Parameter

The example model is a simple controller with a single parameter. The constant
parameter 'control mode' can be either 1 or 2. The parameter must take both values for
the test cases to achieve complete coverage. The value determines the switch block
output and which enabled subsystem will execute.

open_system('sldvdemo param controller');

Using Command Line Functions to Support Changing Parameters

Demonstration Parameterized Model

control_maode |—>—|

| control_mode |—>

r

n
[1 } ¥ delta throt .."='-I = 1)
delta throt
Pl Controller
| control_mode |—>
r
n * 3
delta throt]

P Controller

This model is configured with a constant parameter that must be changed to achieve
complete model coverage. This model is used to demonstrate parameter handling
within Simulink Design Verifier.

Copyright 2006-2010 The MathWaorks, Inc.

Specifying Parameter Values for Analysis

Simulink Design Verifier does not identify parameter values. The tool uses the parameter
values at the start of analysis for generating tests and proving properties. You can force
the tool to incorporate changing parameter values by repeating analysis with different
values.

The first iteration of design verifier will use control mode=1.

control mode = 1;

5-33

5 Specifying Parameter Configurations

5-34

Simulink® Design Verifier™ Options

Simulink Design Verifier functions use options objects created with the sldvoptions
function to control all aspects of analysis and output.

In this example, we will run Simulink Design Verifier in test generation mode for a
maximum of 300 seconds and produce a harness model. We will disable the report
generation.

The default values of the remaining options are set correctly to generate tests. You can
use the get command to display all the options and values.

opts = sldvoptions;

opts.Mode = 'TestGeneration';
opts.MaxProcessTime = 300;
opts.SaveHarnessModel = 'on';
opts.SaveReport = 'off"';
opts.HarnessModelFileName = '$ModelName$ harness.slx';
get(opts)

Mode: 'TestGeneration'
MaxProcessTime: 300

DisplayUnsatisfiableObjectives: 'off'
AutomaticStubbing: 'on'
DesignMinMaxConstraints: 'on'
OQutputDir: 'sldv_output/$ModelName$'
MakeOutputFilesUnique: ‘'on'
BlockReplacement: 'off'

BlockReplacementRulesList:
BlockReplacementModelFileName:
Parameters:

'<FactoryDefaultRules>"'
'$ModelName$ replacement'’
"of f!

ParametersConfigFileName:
ParameterNames:
ParameterConstraints:
ParameterUseInAnalysis:

'sldv_params template.m’
[
[
[

ParametersUseConfig: 'off'
TestgenTarget: 'Model’
ModelCoverageObjectives: 'ConditionDecision'
TestConditions: 'UselocalSettings'
TestObjectives: 'UselocalSettings'
MaxTestCaseSteps: 10000
TestSuiteOptimization: 'Auto’
Assertions: 'UselocalSettings'

Using Command Line Functions to Support Changing Parameters

ProofAssumptions:
ExtendExistingTests:
ExistingTestFile:
IgnoreExistTestSatisfied:
IgnoreCovSatisfied:
CoverageDataFile:
CovFilter:
CovFilterFileName:
IncludeRelationalBoundary:
RelativeTolerance:
AbsoluteTolerance:
DetectDeadlLogic:
DetectActivelogic:
DetectOutOfBounds:
DetectDivisionByZero:
DetectIntegerOverflow:
DetectInfNaN:
DetectSubnormal:
DesignMinMaxCheck:
DetectDSMAccessViolations:
ProvingStrategy:
MaxViolationSteps:
SaveDataFile:
DataFileName:
SaveExpectedOutput:
RandomizeNoEffectData:
SaveHarnessModel:
HarnessModelFileName:
ModelReferenceHarness:
HarnessSource:
SaveReport:
ReportPDFFormat:
ReportFileName:
ReportIncludeGraphics:
DisplayReport:
SFcnSupport:
CodeAnalysisExtraOptions:
ReduceRationalApprox:
SlTestFileName:
SlTestHarnessName:
SlTestHarnessSource:
StrictEnhancedMCDC:
RebuildModelRepresentation:

'UselLocalSettings'
'off'

Ionl

'off'

"off!

"off!

0.0100

1.0000e-05

"off!

"off!

‘on"

‘on"

‘on"

"off!

"off!

"off!

"off!

'Prove’

20

‘on"

'$ModelName$ sldvdata'
"off!

'off!

‘on"

'$ModelName$ harness.slx'
"off!

'Signal Builder'
"off!

"off!

'$ModelName$ report'
"off!

‘on'

‘on"

‘on"

'$ModelName$ test'
'$ModelName$ sldvharness'
'Inport'

'off!
'IfChangeIsDetected’

5-35

5 Specifying Parameter Configurations

Generating Tests and Collecting Coverage

The sldvgencov function generates test suites and model coverage together. All tests
that can be generated with the current parameter values will be collected into the
harness model and the resulting coverage returned in a coverage data object.

[status,coverageData,files] = sldvgencov('sldvdemo param controller',opts);

Checking compatibility for test generation: model 'sldvdemo param controller'’

Compiling model...done

Building model representation...done

'sldvdemo_param controller' is compatible for test generation with Simulink Design Ver:

Generating tests using model representation from 27-Aug-2019 17:36:51...

Completed normally.
Generating output files:

Harness model:
C:\TEMP\Bdoc19b 1192687 6748\1ibF7BE2B\1\tp86cead477\sldv _output\sldvdemo param cont

Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\1ibF7BE2B\1\tp86cead477\sldv _output\sldvdemo param cont

Size-Type
Test Case 1
— delts f——» delia throt f————»("1)
=S ~
a throt
Inputs Test Unit (copied from sldvdemo_param_controller)
Il-.
DoC
Text

5-36

Test Case Explanation

Using Command Line Functions to Support Changing Parameters

File Edit
H $BRR oo | —Td B FREEr 0o @ 4P| E

4| Signal Builder (sldvdermo_param_controller_harness/Inputs) | = || = ” £3 |

Group Signal Axes Help "

Active Group: | |Tast raze 1 ~ | | (g .| |

6.8

6.6

6.4

6.2

della

5.8

5.6

5.4

5.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)
B defta -~

Index: 1

ok

Hame: detts

detta (#17 [vhin vhiax]

Integrating Parameter Initialization Into a Test Harness
Generated test cases must be run with the same parameter values used during analysis.

An initialization command configures the values during simulation of test cases. The
sldvharnessmerge function incorporates initialization commands into test harnesses.

5-37

5 Specifying Parameter Configurations

5-38

initCmdStr = 'control mode=1;"
[path,modelName] = fileparts(files.HarnessModel);
sldvmergeharness (modelName,modelName,initCmdStr);

initCmdStr =

‘control mode=1;'

Modifying Parameters and Repeating Test Generation

Modifying parameter values enables additional test generation. Passing a coverage data
object as the third input to sldvgencov forces the function to ignore all model coverage
test objectives that have been satisfied. We use the coverage data that was returned from
the earlier call to sldvgencov to restrict test generation to unsatisfied test objectives.

control mode=2;
[status,newCov,newFiles] = sldvgencov('sldvdemo param controller',opts, false,coverageD:

Validating cached model representation from 27-Aug-2019 17:36:51...change detected
Checking compatibility for test generation: model 'sldvdemo param controller'’
Compiling model...done

Building model representation...done

'sldvdemo_param controller' is compatible for test generation with Simulink Design Ver:

Generating tests using model representation from 27-Aug-2019 17:37:31...

Completed normally.
Generating output files:

Harness model:
C:\TEMP\Bdoc19b 1192687 6748\1ibF7BE2B\1\tp86cead477\sldv _output\sldvdemo param cont

Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\1ibF7BE2B\1\tp86cea477\sldv _output\sldvdemo param cont

Using Command Line Functions to Support Changing Parameters

Size-Type
Test Case 1
—] delta fb———p» delia throt ————— (" 1)
=] ~
— throt
Inputs Test Unit (copied from sldvdemao_param_controller)
=
OoC
Text

Test Case Explanation

5-39

5 Specifying Parameter Configurations

File Edit Group

14| Signal Builder {sldvelemo_param_controller_harness/Inputs)

Signal Axes Help

GH| 4 REB|oo|—.IuE

EIGEE|» 1 om | R H

Active Group: | | Test Cgze 1 -

delta

6.2

a8

9.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (sec)
B cetta

Hame: detts

ok

Index: 1 L

0.8

detta (#17 [vhin vhiax]

5-40

Using Command Line Functions to Support Changing Parameters

4| Signal Builder (sldvderno_param_controller_harness1/Inputs) = =

)

File Edit Group Signal Axes Help o
BEH B oo~ TN FRGEGE » 0w |

Active Group: | |Tast raze 1 v | | (g | .

della

6.2 -

58

5.6

I I I I I I I I I |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (sec)
B defta -~

Hame: detts

Index: 1 L

ok detta (#17 [vhin vhiax]

Merging Test Harnesses Into a Single Model

Another call to sldvharnessmerge merges the test data from the new harness and its
initialization command into the existing harness model.

5-41

5 Specifying Parameter Configurations

newInitCmd = 'control mode=2;'
[path,newModelName] = fileparts(newFiles.HarnessModel);
sldvmergeharness (modelName, newModelName, newInitCmd) ;

newInitCmd =

"control mode=2;'

5-42

Using Command Line Functions to Support Changing Parameters

4| Signal Builder (sldvdermo_param_controller_harness/Inputs)
File Edit Group Axes

EE b RER oo |~ A& REE

Signal Help

)

all

} Il I-.

4 Pl

Active Group: | | Test Cgze 4

della
6.8

6.6

6.4

6.2

5.8

9.6

5.4

8.2

0.2 0.3 0.4

Time (sec)

Hame: detts

Index: 1

ok

0.5 0.6 0.7 0.8

detta (#17 [vhin vhiax]

Executing the Tests in the Harness Model

We close the second harness model that was created because the test cases have been
merged into the first harness model. You can execute the suite of tests by clicking the

"Run all" button on the Signal Builder.

5-43

5 Specifying Parameter Configurations

close system(newModelName,0);
sldvdemo playall(modelName);

14| Signal Bunleler {sldvelemao_param_controller_harness/Inputs) E@

File Edit Group Signal Axes Help o

BH FB2R oo | —~T 0 FREE] o0 ow | 4|

Active Group: | | Test Case 3 e @ = =

delta

6.2 -

58

5.6

| | | | | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (sec)

Hame: detts

Index: 1 L

Click to select signal ‘derta (17 [hin b]

Clean Up

To complete the example, close the models and remove the generated files.

5-44

Using Command Line Functions to Support Changing Parameters

close system(modelName,0);

close system('sldvdemo param controller',0);
delete(files.HarnessModel);
delete(newFiles.HarnessModel);

5-45

5 Specifying Parameter Configurations

Parameter Identification

This example shows how to tune parameters using parameter configuration file for
Simulink Design Verifier analysis.

Simulink Design Verifier
Parameter Identification

| control_mode |—>—|

| control_made |—>
r

n
i1 } ™ delta throt .-"-‘-I ! e 1)
delta throt
Pl Controller
| control_mode l—r
v
n * 7
 delta throt 0

P Controller

This example shows how to tune parameters using parameter configuration file for Simulink
Design Verfier analysis. The model contains the parameter "control_mode” that enables the
active controller and selects its output to be the model output. Simulink Design Verifier treats
thizs parameter as an input that iz constrained to be either 1 or 2 and generates the
appropriate value for each test case.

Run View Options
(double=click) (double-click)

Copyright 2006-2010 The MathWarks, Inc.

5-46

Extend Existing Test Cases After Applying Parameter Configurations

Extend Existing Test Cases After Applying Parameter
Configurations

This example shows how to achieve missing coverage by extending existing test cases
after applying parameter configurations.

In this example, you generate test cases for a model and review the analysis results. The
results show that the model consists of unsatisfiable objectives and does not achieve full
coverage. Then, you apply parameter configurations in the model and reuse the
previously generated test cases to achieve full model coverage.

Step 1: Generate Initial Test Cases and Review Results

The sldvexParameterController model is a cruise control model that controls the
throttle speed by selecting a P Controller or PI Controller. The
ControllerModeSelection subsystem uses the SelectMode parameter to select the
controller mode. Define the enumerated data type for Selectmode by using the function
Simulink.defineIntEnumType. For more information on enumerated values, see “Use
Enumerated Data in Simulink Models” (Simulink).

Simulink.defineIntEnumType('EnumForControllerSelection', ...
{'Pmode', 'PImode'},[1;2]);

SelectMode = Simulink.Parameter;

SelectMode.Value = EnumForControllerSelection.Pmode;

model = 'sldvexParameterController';

open_system(model);

5-47

5 Specifying Parameter Configurations

Simulink Design Verifier
Extend Test Cases in Presence of Parameter Configuratios

8
h 4

bl
enable target »(1)

.
¥
B
g
o

L3} -

set [0 100] .

Active Control ;
Actual s [L —| Active Confrol

AR s -
speed Throttle -—— (" 2)
@ - throttle

inc Throttle Input

Target Speed —l_..

L3 } >

dec ControllerModeSelection

Controller

5-48

This example shows how to extend exisiting test cases in presence of parameter configurations.
The ControllerModeSelection selects the mode of the controller based on the parameter value.

Copyright 2018 The MathWaorks, Inc.

Set the sldvoptions and analyze the model by using the specified options.

opts = sldvoptions;

opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'MCDC';

[status, files] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that 15 out of 54
objectives are unsatisfiable.

Extend Existing Test Cases After Applying Parameter Configurations

In the Results Summary window, click Highlight analysis results on model. Double-
click the ControllerModeSelection subsystem. The PI ModeSelection and
P_ModeSelection subsystems are highlighted in red and consist of unsatisfiable
objectives.

SelectMode I In1

.j—p m2 | outt
Active Control merge
In3

¥

¥

G
Thrattle Input PI_MadeSelection
I In1
B In2 . Cutt
' K]
F_ModeSalection

To view the model coverage report, in the Results Summary window, click Simulate tests
and produce a model coverage report. The report shows that the model does not
achieve full coverage.

5-49

5 Specifying Parameter Configurations

Summary

Model Hierarchy/Complexity

Decision Condition MCDC Test Condition Execution
1. sldvexParameterController 10 64% 23% G330 — 100% ——— 240 ——
2. .. Controller 0 64% = 3% m— (3% — NA 4% m——
K TR ControllethfodeSelection 6 38% e 67% — 25% mm NA 67% —
4o P _ModeSelection 2100% m—— 57 — 30% o NA 100% ——
L P Controller? 2 100% m———— NA NA NA 100% ——
B, PI_ModeSelection 4 17% = 67% — 0% NA 43% o
T Pl Controllerl 4 17% m NA NA NA 0%

Full coverage is not achieved because the parameter value SelectMode is restricted to
the default value of EnumForControllerSelection.Pmode. Consequently, full
coverage is not achieved for the PI ModeSelection subsystem.

Step 2: Configure Parameter Configurations and Extend Existing Test Cases

If you apply parameter configurations, Simulink Design Verifier treats the parameter as a
variable during analysis and constraints the values based on the constraint values that

you specify.

Apply parameter configurations for the SelectMode parameter by specifying the
constraint values for parameterValue.

controlParameter = [{'SelectMode'}];

parameterValue = [{'[EnumForControllerSelection.Pmode EnumForControllerSelection.PImo
opts.Parameters = 'on';

opts.ParametersUseConfig = 'on';

opts.ParameterNames = controlParameter;

opts.ParameterConstraints = parameterValue;

opts.ParameterUseInAnalysis = {'on'};

To reuse the previously generated test cases, configure the analysis option to extend the
existing test cases and specify the existing test file.

opts.ExtendExistingTests = 'on';

opts.IgnoreExistTestSatisfied = 'off';
opts.ExistingTestFile = files.DataFile;

5-50

Extend Existing Test Cases After Applying Parameter Configurations

Step 3: Perform Analysis and Review Coverage Report

Analyze the model by using the specified options.

[status, fileNames] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that all the objectives
are satisfied.

To generate model coverage report, click Simulate tests and produce a model
coverage report. The report shows that the model achieves full coverage.

Summary

Model Hierarchy/Complexity

Decision Condition MCDC Test Condition Execution
1. sldvexParameterController 10 100% s 100% ——— 00% e 1002 e (002 —
2. ... Controller O 100% s 100% ——— 100% —— A 100% —
E ControlletblodeSelection 6 100% o 100% ———— 00% — Y 100% ——
4o PI ModeSelection 4 100% s 100% ——— 100% ———— Y 100% ——
5 T Pl Controller] 4 100% =—— A NA WA 100% ———
T P ModeSelection 2 100% e 100% —— 1007 — A 100% ———
T P Controller2 2 100% e——— A NA NA 100% ——

To complete this example, close the model.
close system('sldvexParameterController', 0);
See also

* “Parameter Constraint Values” on page 5-2
* “When to Extend Existing Test Cases” on page 8-2

Detecting Design Errors

“What Is Design Error Detection?” on page 6-2

“Derived Ranges in Design Error Detection” on page 6-3

“Run a Design Error Detection Analysis” on page 6-4

“Dead Logic Detection” on page 6-9

“Detect Dead Logic Caused by an Incorrect Value” on page 6-14

“Model Objects That Receive Dead Logic Detection” on page 6-17

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-26

“Check for Specified Minimum and Maximum Value Violations” on page 6-31
“Detect Out of Bound Array Access Errors” on page 6-38

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-45
“Detect Data Store Access Violations” on page 6-51

“Filter Objectives by Using Analysis Filter Viewer” on page 6-55

“Design Error Detection” on page 6-60

“Design Error Detection for Out of Bound Array Access” on page 6-62
“Detect Design Errors in C/C++ Custom Code” on page 6-63

“Exclude and Justify Objectives for Design Error Detection” on page 6-67
“Detect Integer Overflow in a Model with Complex Inputs” on page 6-74

6 Detecting Design Errors

What Is Design Error Detection?

6-2

Design error detection is a Simulink Design Verifier analysis mode that detects the
following types of errors:

* Dead logic

* Integer or fixed-point data overflow

* Division by zero

» Intermediate signal values that are outside the specified minimum and maximum
values

* Out of bound array access

Before you simulate your model, analyze your model in design error detection mode to
find and diagnose these errors. Design error detection analysis determines the conditions
that cause the error, helping you identify possible design flaws. Design error detection
analysis also computes a range of signal values that can occur for block outports and
Stateflow local data in your model.

After the analysis, you can:

* Click individual blocks to view the analysis results for that block.
* Create a harness model containing test cases that demonstrate the errors.
* Create an analysis report that contains detailed results for the entire model.

Derived Ranges in Design Error Detection

Derived Ranges in Design Error Detection

When you specify minimum and maximum values for a signal or data in a model
(Simulink), these values define a design range.

During design error detection, the software analyzes the model behavior and computes
the values that can occur during simulation for:

* Block Outports

+ Stateflow local data

The range of these values is called a derived range.

The Use specified input minimum and maximum values parameter in the
Configuration Parameters dialog box, on the Design Verifier pane, if enabled, tells the
analysis to consider the design ranges on the model input ports as constraints when
calculating the derived ranges. By default, the Use specified input minimum and
maximum values parameter is enabled.

If Use specified input minimum and maximum values is disabled, the software does
not restrict the signals when computing the derived ranges.

To see how this process works, consider the following model.

[-35.35] [0..20]

ju| ——C

In this model, the design ranges are:

* Inport block: [-35..35]
* Abs block output: [0..30]

Given the design range on the Inport block, the only possible values for the Abs block
output are values from 0 to 35. Therefore, the derived range for the Abs block is [0..35].

However, if you disable the Use specified input minimum and maximum values
parameter, the analysis calculates the derived ranges based on unrestricted values of the
input ports of the model. In the preceding model, the only valid outputs of the Abs block
are nonnegative numbers. Consequently, the derived range for the Abs block is [0..Inf].

6-3

6 Detecting Design Errors

Run a Design Error Detection Analysis

6-4

In this section...

“Workflow for Detecting Design Errors” on page 6-4
“Understand the Analysis Results” on page 6-4
“Review the Latest Analysis Results in the Results Summary Window” on page 6-7

“Check For Design Errors using the Model Advisor” on page 6-7

Workflow for Detecting Design Errors

To analyze your model for design errors, use the following workflow:

Verify that your model is compatible with Simulink Design Verifier software.

2 Ifyou have Stateflow objects in your model, in the Configuration Parameters dialog
box, on the Diagnostics > Stateflow pane, set Unreachable execution path to
error.

3 Specify options that control how Simulink Design Verifier detects design errors in
your model.

Execute the Simulink Design Verifier analysis.
5 Review the analysis results.

Note If you select design error detection for dead logic, you cannot select any other type
of design error detection. For dead logic detection, Simulink Design Verifier performs an
independent analysis. If you want to detect design errors for dead logic and any of the
other types of design errors, you must perform design error detection analysis twice.

Understand the Analysis Results

When you run a design error detection analysis, by default, the software highlights model
objects in one of four colors so that the analysis results are easy to review.

Run a Design Error Detection Analysis

Model Object
Highlighting Color

Analysis Results

Green

One of the following:

* The analysis did not find overflow or division-by-zero errors.
* The analysis did not find dead logic.

* The analysis did not find intermediate or output signals
outside the range of user-specified minimum and maximum
constraints.

* The analysis did not find out of bound array access errors.

Note If your design contains at least one object that Simulink
Design Verifier highlights red, other objects in your model that
are highlighted green may also contain further design errors. If
an object in your design causes run-time errors, Simulink Design
Verifier may not be able to determine further errors on objects
that are downstream of or rely on the results of the object that
causes the run-time errors. Resolve the errors that cause the
initial red highlighting and re-run the analysis to determine if
Simulink Design Verifier will also highlight other objects in your
model as red.

Red

One of the following:

* The analysis found at least one test case that causes overflow
or division-by-zero errors.

* The analysis found dead logic.

* The analysis found intermediate or output signals outside the
range of user-specified minimum and maximum constraints.

* The analysis found at least one test case that causes an out of
bound array access error.

6 Detecting Design Errors

6-6

Model Object Analysis Results
Highlighting Color
Orange For at least one objective, the analysis could not determine if the
model has dead logic, overflow errors, division-by-zero errors,
signals outside the user-specified range, or out of bound array
access errors. This situation can occur when:
* The analysis times out.
* The software cannot determine if an error occurred or not.
This result is due to:
* Automatic stubbing errors; for more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.
* Limitations of the analysis engine.
Gray The model object was not part of the analysis.

The Simulink Design Verifier Results window initially displays a summary of the analysis
results, as in the following example.

'p'i Results: sldvdemo_design_error_detection — O >

5/7 objectives are valid.

Results:

Design error detection completed normally.

2/7 objectives are falsified - needs simulation.

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

When you click an object in the model, additional details about the results for that object
are displayed in the Simulink Design Verifier Results window.

Run a Design Error Detection Analysis

Tip By default, the Simulink Design Verifier Results window is always the topmost visible

window. To change that setting, click the & icon and on the context menu, clear the
check mark next to Always on top.

Review the Latest Analysis Results in the Results Summary
Window

If you close the analysis results to fix the cause of the errors in your model, you might
need to rereview the analysis results. As long as your model remains open, you can view
the results of your most recent analysis results in the Results Summary Window.

After you close your model, you can no longer view any analysis results.

To view the latest results, on the Design Verifier tab, in the Review Results section,
click Results Summary.

For any Simulink Design Verifier analysis, from the Results Summary Window, you can
perform the following tasks:

* Highlight the analysis results on the model.

* Generate a detailed analysis report.

* Create the harness model, or if the harness model already exists, open it.

Note If no objectives are falsified, you cannot create the harness model.
* View the data file.
* View the log file.

Check For Design Errors using the Model Advisor

You can perform design error detection analysis from the Model Advisor, which is
particularly useful if you need to perform other model checks. To analyze your model from
the Model Advisor, follow this high-level workflow:

1 Specify options that control how Simulink Design Verifier detects design errors in
your model.

2 Open the Model Advisor.

6 Detecting Design Errors

6-8

3 From the system hierarchy, select the model or model component you want to analyze

Expand the design error detection analysis items. Look for Simulink Design Verifier
under either By Product or By Task.

5 If you have not checked your model for compatibility, enable the compatibility check
for Simulink Design Verifier.

Select the design error detection checks you want to run.
Run the selected checks.
Review the analysis results.

See Also

More About
. “Check Your Model Using the Model Advisor” (Simulink)

Dead Logic Detection

Dead Logic Detection

In this section...

“Detect Dead Logic Only” on page 6-9
“Detect Dead and Active Logic” on page 6-10

“Run a Dead Logic Analysis and Review Results” on page 6-10

Before you simulate a model, use dead logic detection to analyze the model for dead logic.
In Simulink Design Verifier, design error detection for dead logic consists of two analysis
options:

Detection of dead logic only: If you select this option, Simulink Design Verifier
analyzes your model without making any approximations, such as rational
approximation for floating points, or while loop approximation. For more information,
see “Approximations” on page 2-22. With this option, Simulink Design Verifier does not
report active logic or undecided objectives and it may not identify some dead logic in
your model.

This option is available in:

* The Model Advisor. See “Check For Design Errors using the Model Advisor” on
page 6-7.

* The Configuration Parameters dialog box, on the Design Verifier > Design Error
Detection pane.

Detection of active logic: Active logic detection runs concurrently with dead logic
detection. With this option, Simulink Design Verifier reports active logic in addition to
dead logic as well as undecided objectives. This option may in some cases identify or
find additional dead logic. The analysis may use approximations and are reported
accordingly.

This option is available in the Configuration Parameters dialog box, on the Design
Verifier > Design Error Detection pane.

Detect Dead Logic Only

If you are not using the Model Advisor, to detect dead logic:

1

On the Design Verifier tab, in the Mode section, select Design Error Detection.

6-9

6 Detecting Design Errors

6-10

Click Error Detection Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Design Error
Detection pane:

a Enable the “Dead logic” on page 15-53 option.

b Clear the “Identify active logic” on page 15-53 option, if it is selected.

To apply these settings, click OK and close the Configuration Parameters dialog box.
Click Detect Design Errors.

Detect Dead and Active Logic

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Design Error
Detection pane, enable the “Dead logic” on page 15-53 and “Identify active logic”
on page 15-53 options.

To apply these settings, click OK and close the Configuration Parameters dialog box.
Click Detect Design Errors.

Run a Dead Logic Analysis and Review Results

This example shows how to detect dead logic in the sldvSlicerdemo dead logic
example model. Dead logic detection finds the unreachable objectives in the model that
cause the model element to remain inactive.

1

Open the sldvSlicerdemo dead logic model.

open_system('sldvSlicerdemo dead logic');
On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Design Error
Detection pane, enable “Dead logic” on page 15-53 option and clear “Identify
active logic” on page 15-53 option.

Click Detect Design Errors.

The software analyzes the model for dead logic and displays the results in the Results
Summary window. The result indicates that seven of the 24 objectives are dead logic.

Dead Logic Detection

Simulink Design Verifier Results Summary: sldvSlicerderno_dead_lo...

Objectives processed 24/24

Valid 0
Falsified 7
Elapsed time 0:21

Progress |

Design error detection completed normally.
7/24 objectives are dead logic

Results:

* Highlight analysis results on model
* Detailed analysis report: (HTML) (PDF)

Data saved in: sldvSlicerdemo dead logic sldvdata.mat
in folder: H:\sldv_output\sldvSlicerdemo_dead _logic

View Log

Closs

Click Highlight analysis results on model. The dead logic model elements are

highlighted in red.

Open the Controller subsystem, and click the OR block highlighted in red. The

Result Inspector displays the summary of the dead logic.

6-11

6 Detecting Design Errors

The set input is equal to 1, so the input port 1 of the OR block can only be true.
The status implies that the input port 1 false condition is dead logic. Similarly, the
input port 2isunreachable, as the objective never executes and is dead logic.

enable
1 } >
(2 }—»{NoT »| AND
IeakE #i Results: sldvSlicerdemo_dead_logic — O X
v 59
e ;
l sidvSlicerdemo_dead_logic/Controller/Logical
Active last step Operator2
DEAD LOGIC:
Logic: input port 1 can only be true
(4 }‘ Logic: input port 2 unreachable
speed E
G
set

8 To view the detailed analysis report, in the Results Summary window, click HTML.

The report displays the summary of all the results that are dead logic in the model.

Chapter 3. Dead Logic

Simulink Design Vernifier found that these decision and condition outcomes cannot occur and are dead-logic in the model. Dead-logic n the model
can also be a side-effect of parameter configurations or input specified minimum maxumum constraints.

Type Model Item Description

1 Decision Controller/Switchl logiclal trigger mnput can never be false (output is from
- 3rd input port)

2 Condition Controller/Logical Operator? Logic: input port 1 can only be true

3 Condition Controller/Logical Operator? Logic: input port 2 unreachable

4 Condition ControllerT ogical Operator Logic: input port 3 can only be true

5 Decision Controller/PI ControllerDiscrete-Time Integrator integration result <= lower limit can never be true

6 Decision Controller/PI Controller Dhscrete-Time Integrator integration result == upper limit can never be true

6-12

See Also

The software stores the detailed analysis results in the DeadLogic field in the
“Simulink Design Verifier Data Files” on page 13-10. You can use the data file for
further analysis of the results.

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-52
. “Model Objects That Receive Dead Logic Detection” on page 6-17

6-13

6 Detecting Design Errors

Detect Dead Logic Caused by an Incorrect Value

6-14

In this section...

“Analyze the Fuel System Model” on page 6-14
“Review the Results and Trace to the Model” on page 6-15
“Investigate the Cause of the Dead Logic” on page 6-16

“Update the Input Constraint and Reanalyze the Model” on page 6-16

Dead logic detection helps you to identify:

* Model design errors.

* Extraneous model elements.

* Model elements that should be executed, but are not.

In this example, you analyze a fuel rate controller model to determine if the model

contains dead logic. Dead logic detection finds the incorrect variable value that causes a
transition condition in a Stateflow chart to remain inactive.

Analyze the Fuel System Model
1 Open the model.
sldvdemo fuelsys logic simple

Ensure that the current folder is writable.
2 Configure dead logic detection.

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Select Error Detection Settings.

In the Configuration Parameter dialog box, select Dead logic. Clear Identify active
logic. Click OK.

Click Detect Design Errors.
6 The results dialog box shows that there are 2/109 objectives that are dead logic.

Detect Dead Logic Caused by an Incorrect Value

PL Results: sldvdemo_fuelsys_logic_simple — O *

Design error detection completed normally.
2/10% objectives are dead logic.
107/109 objectives are active logic.

Results:

* Detailed analysis report: (HTML) (FDF)

Review the Results and Trace to the Model

1 Create an analysis report. From the results inspector window, click HTML.

2 Scroll to the Dead Logic section under Design Error Detection Objectives
Status. The table lists two instances of dead logic.

3 In the Description column, one of the dead logic instances is the false condition of
press < zero_thresh. The dead logic result indicates that in the simulation, the
false condition was not executed. This logic is part of the
Sens Failure Counter.INC transition.

4 Click the Model Item link. Simulink highlights the transition in the chart.

5 peed_Sensor_Mode

peed==0 & press < zero_thresh]/

i Sens_Failure_Counter. INC i
| ‘={speed_norm speed_fail |
! entry: fail_state[SPEED] = 0 entry: fail_state[SPEED] = 1 | !
| 1':5 [speed > 0]/ i
! \ Sens_Failure Counter.DEC i

'
e

6-15

6 Detecting Design Errors

Investigate the Cause of the Dead Logic

1 The logical statement controlling the transition is

speed==0 & press < zero thresh
Return to the report. Scroll to the Constraints section.

The value of the input control logic/Input Data "press" is constrained from
0 through 2. Click the link to open the input in the Model Explorer.

4 Select the Model Workspace in the Model Explorer. In the contents table, select
zero_thresh. The value of zero_thresh is 250.

Given the constrained value of press, it is always less than zero_thresh and
therefore, the false condition is never exercised.

Update the Input Constraint and Reanalyze the Model

1 Change the value of zero thresh to 0.250.
2 Reanalyze the model. On the Design Verifier tab, click Detect Design Errors.
3 Inthe new results, the objective is no longer dead logic.

See Also

Related Examples
. “Dead Logic Detection” on page 6-9

6-16

Model Objects That Receive Dead Logic Detection

Model Objects That Receive Dead Logic Detection

Model objects that have decision or condition outcomes receive dead logic detection, as
the following table shows. Click a link in the first column to get more detailed information
about the outcomes for specific model objects.

Model Object Receiving Dead Logic Decision Outcomes |Condition Outcomes

Detection

“Abs” on page 6-18 L]

“Dead Zone” on page 6-18 L]

“Discrete-Time Integrator” on page 6- |®

19

“Enabled Subsystem” on page 6-19 . .
“Enabled and Triggered Subsystem” on |® L]
page 6-20

“Fcn” on page 6-20 .
“For Iterator, For Iterator Subsystem” |®

on page 6-20

“If, If Action Subsystem” on page 6-21 |® .
“Library-Linked Objects” on page 6-21 |® L]
“Logical Operator” on page 6-21 .
“MATLAB Function” on page 6-21 L] .
“MinMax” on page 6-22 L]

“Model” on page 6-22) L]
“Multiport Switch” on page 6-22 L]

“Rate Limiter” on page 6-22 L]

“Relay” on page 6-23 .

“Saturation” on page 6-23 L]

“Stateflow Charts” on page 6-24 L] L]
“Switch” on page 6-24 L]

“SwitchCase, SwitchCase Action .

Subsystem” on page 6-24

6-17

6 Detecting Design Errors

6-18

Model Object Receiving Dead Logic Decision Outcomes Condition Outcomes
Detection

“Triggered Models” on page 6-24 L] L]
“Triggered Subsystem” on page 6-25 L] L]
“While Iterator, While Iterator .

Subsystem” on page 6-25

Abs

The Abs block has decision outcomes based on:

+ Input to the block being less than zero.
» Data type of the input signal.

For input to the block being less than zero, there are two decision outcomes:

» Block input is less than zero, indicating a true decision.
» Block input is not less than zero, indicating a false decision.

If the input data type to the Abs block is uint8, uint16, or uint32, the software sets
the block output equal to the block input without making a decision. If the input data type
to the Abs block is Boolean, an error occurs.

Dead Zone

The Dead Zone block has decision outcomes based on these parameters:

o Start of dead zone
* End of dead zone

The Start of dead zone parameter specifies the lower limit of the dead zone. For the
Start of dead zone parameter, there are two decision outcomes:

» Block input is greater than or equal to the lower limit, indicating a true decision.
* Block input is less than the lower limit, indicating a false decision.

The End of dead zone parameter specifies the upper limit of the dead zone. For the End
of dead zone parameter, there are two decision outcomes:

Model Objects That Receive Dead Logic Detection

* Block input is greater than the upper limit, indicating a true decision.
* Block input is less than or equal to the upper limit, indicating a false decision.

Discrete-Time Integrator

The Discrete-Time Integrator block has decision outcomes based on these parameters:

* External reset
* Limit output

If you set External reset to none, the software does not report decision outcomes.
Otherwise, there are two decision outcomes:

* Block output is reset, indicating a true decision.
» Block output is not reset, indicating a false decision.

If you do not select Limit output, the software does not report decision outcomes.
Otherwise, the software reports decision outcomes for the Lower saturation limit and
the Upper saturation limit.

For the Upper saturation limit, there are two decision outcomes:

» Integration result is greater than or equal to the upper limit, indicating a true
decision.

* Integration result is less than the upper limit, indicating a false decision.
For the Lower saturation limit, there are two decision outcomes:

» Integration result is less than or equal to the lower limit, indicating a true decision.
* Integration result is greater than the lower limit, indicating a false decision.

Enabled Subsystem

The Enabled Subsystem block has two decision outcomes:

* Block is enabled, indicating a true decision.
* Block is disabled, indicating a false decision.

The Enabled Subsystem block has two condition outcomes only if the enable input is a
vector:

6-19

6 Detecting Design Errors

6-20

* Element of the enable input is true, indicating a true condition.
* Element of the enable input is false, indicating a false condition.

Enabled and Triggered Subsystem

The Enabled and Triggered Subsystem block has two decision outcomes:

» Trigger edge occurs while the block is enabled, indicating a true decision.

» Trigger edge does not occur while the block is enabled, or the block is disabled,
indicating a false decision.

The software determines condition outcomes for the enable input and the trigger input
separately.

* For the enable input:

* Input is true, indicating a true condition.
* Input is false, indicating a false condition.
* For the trigger input:

* Trigger edge occurs, indicating a true condition.
+ Trigger edge does not occur, indicating a false condition.

Fcn

The Fcn block has two condition outcomes based on input values or arithmetic
expressions that are inputs to Boolean operators in the block:

* Input to a Boolean operator is true, indicating a true condition.
» Input to a Boolean operator is false, indicating a false condition.

For Iterator, For Iterator Subsystem

The For Iterator block and For Iterator Subsystem have two decision outcomes:

+ Iteration value being at or below the iteration limit, indicated as true.
+ Iteration value being above the iteration limit, indicated as false.

Model Objects That Receive Dead Logic Detection

If, If Action Subsystem

The If blocks that causes an If Action Subsystem to execute has:

* Decision outcomes for the if condition and all elseif conditions defined in the If
block.

* Condition outcomes if the if condition or any of the elseif conditions contains a
logical expression with multiple conditions.

Library-Linked Objects

Simulink blocks and Stateflow charts that are linked to library objects receive the same
dead logic detection that they would receive if they were not linked to library objects.

Logical Operator

The Logical Operator block has two condition outcomes:

* Input is true, indicating a true condition.

* Input is false, indicating a false condition.

MATLAB Function

The following MATLAB Function block statements have decision outcomes:

* Function header - Function or sub-function that is executed.

+ 1if - Expression evaluates to true, indicating a true decision. Expression evaluates to
false, indicating a false decision.

* switch - Decision outcomes corresponding to every switch case path, including the
fall-through case.

+ for - Loop condition evaluates to true, indicating a true decision. Loop condition
evaluates to false, indicating a false decision.

* while - Loop condition evaluates to true, indicating a true decision. Loop condition
evaluates to false, indicating a false decision.

The following logical conditions have condition outcomes:

6-21

6 Detecting Design Errors

6-22

* if statement conditions
* while statement conditions

MinMax

The MinMax block has decision outcomes based on passing each input to the output of
the block.

For passing each input to the output of the block, there are two decision outcomes:

* Input passed to block output, indicating a true decision.
» Input not passed to block output, indicating a false decision.

Model

The Model block itself does not have decision or condition outcomes. The model that the
block references receive the decision or condition outcomes.

Multiport Switch

The Multiport Switch block has decision outcomes based on passing each input, excluding
the first control input, to the output of the block.

For passing each input, excluding the first control input, to the output of the block, there
are two decision outcomes:

+ Input passed to block output, indicating a true decision.
* Input not passed to block output, indicating a false decision.

Rate Limiter

The Rate Limiter block has decision outcomes based on the Rising slew rate and Falling
slew rate parameters.

For the Rising slew rate, there are two decision outcomes:

* Block input changes more than or equal to the rising rate, indicating a true decision.
* Block input changes less than the rising rate, indicating a false decision.

Model Objects That Receive Dead Logic Detection

For the Falling slew rate, there are two decision outcomes:

» Block input changes less than or equal to the falling rate, indicating a true decision.
* Block input changes more than the falling rate, indicating a false decision.
The software does not have Falling slew rate outcomes for a time step when the Rising

slew rate is true.

Relay

The Relay block has decision outcomes based on the Switch on point and the Switch off
point parameters.

For the Switch on point, there are two decision outcomes:

* Block input is greater than or equal to the Switch on point, indicating a true
decision.

* Block input is less than the Switch on point, indicating a false decision.
For the Switch off point, there are two decision outcomes:

» Block input is less than or equal to the Switch off point, indicating a true decision.
* Block input is greater than the Switch off point, indicating a false decision.

The software does not have Switch off point decision outcomes for a time step when the
switch on threshold is true.

Saturation

The Saturation block has decision outcomes based on the Lower limit and Upper limit
parameters.

For the Upper limit, there are two decision outcomes:

* Block input is greater than or equal to the upper limit, indicating a true decision.
* Block input is less than the upper limit, indicating a false decision.

For the Lower limit, there are two decision outcomes:

* Block input is greater than the lower limit, indicating a true decision.

6-23

6 Detecting Design Errors

6-24

* Block input is less than or equal to the lower limit, indicating a false decision.

The software does not have Lower limit decision outcomes for a time step when the
upper limit is true.

Stateflow Charts

The Stateflow Chart block has decision outcomes:

» Transition decision is evaluated as true, indicating a true decision.
» Transition decision is evaluated as false, indicating a false decision.

The Stateflow Chart block has condition outcomes:

* Condition is evaluated as true, indicating a true condition.
* Condition is evaluated as false, indicating a false condition.

Switch

The Switch block has decision outcomes based on the control input to the block.
For the control input to the block, there are two decision outcomes:

* Control input evaluates to true, indicating a true decision.
* Control input evaluates to false, indicating a false decision.
SwitchCase, SwitchCase Action Subsystem

The SwitchCase block and SwitchCase Action Subsystem have two decision outcomes:

* Block evaluates to true, indicating a true decision.
* Block does not evaluate to true, indicating a false decision.

Triggered Models

The Triggered Models block has two decision outcomes:

* Referenced model is triggered, indicating a true decision.

Model Objects That Receive Dead Logic Detection

* Referenced model is not triggered, indicating a false decision.
If the trigger input is a vector, then there are two condition outcomes:

» Element of the trigger port is true, indicating a true condition.
* Element of the trigger port is false, indicating a false condition.

Triggered Subsystem

The Triggered Subsystem block has two decision outcomes:

» Block is triggered, indicating a true decision.
* Block is not triggered, indicating a false decision.

If the trigger input is a vector, then there are two condition outcomes:

* Element of the trigger edge is true, indicating a true condition.
* Element of the trigger edged is false, indicating a false condition.

While Iterator, While Iterator Subsystem

The While Iterator block and While Iterator Subsystem have two decision outcomes:

* while condition is satisfied, indicating a true decision.
* while condition is not satisfied, indicating a false decision.

6-25

6 Detecting Design Errors

Detect Integer Overflow and Division-by-Zero Errors

6-26

In this section...

“About This Example” on page 6-26
“Analyze the Model” on page 6-26
“Review the Analysis Results” on page 6-27

About This Example

The following sections describe how to analyze the
sldvdemo _cruise control fxp fixed model for integer overflow and division-by-
Zero errors.

Analyze the Model

Open and check model for integer overflow and division-by-zero errors:

1
2

Open the sldvdemo cruise control fxp fixed model.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings.

In the Configuration Parameters dialog box, select Design Verifier > Design Error
Detection.

On the Design Error Detection pane, select:

* Integer overflow
* Division by zero

In the Configuration Parameters dialog box, on the Diagnostics > Data Validity
pane, set Signals > Wrap on overflow, Signals > Saturate on overflow and
Parameters > Detect overflow to error.

Click OK to save these settings and close the Configuration Parameters dialog box.
In the Mode section, select Design Error Detection.
Click Detect Design Errors.

When the analysis is complete:

Detect Integer Overflow and Division-by-Zero Errors

* The software highlights the model with the analysis results.

* The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.

Review the Analysis Results

* “Review the Results on the Model” on page 6-27
* “Review the Harness Model” on page 6-29
* “Review the Analysis Report” on page 6-30

Review the Results on the Model

The derived ranges can help you understand the source of an error by identifying the
possible signal values, as you can see by taking the following steps:

1 At the top level of the sldvdemo cruise control fxp fixed model, click the
Fixed-Point Controller subsystem.
The Simulink Design Verifier Results window displays the derived range of possible
signal values for the Outports, as calculated by the analysis:
* The values of Outport 1 (throt) range from —2.6101 to 2.6096.
* The values of Outport 2 (target) range from 0 to 255.9960.
'D'ﬁ Results: sldvdemo_cruise_control_fup_fixed — O)4
~ &
Back to summary
sldvdemo_cruise_control_fxp_fixed/Fixed-Point Controller
Derived Ranges:
Outport 1: [-2.610107421875..2.609615140625]
Outport 2: [0..255.99609375]
2

Click the Outport blocks of the sldvdemo cruise control fxp fixed model to
see the same signal bound values.

3 Open the Fixed-Point Controller subsystem.

6-27

6 Detecting Design Errors

6-28

Two objects in this subsystem are outlined in red. The PI Controller subsystem is
outlined in green.

Click the Sum block, outlined in red, that provides the error input to the PI Controller
subsystem.

.. sfelfi_En® :
+ error throt -

Pl Controller

This Sum block can produce an overflow error. The analysis found a test case that can

result in a computation where the output of the Sum block exceeds the range [-
128..127.9960].

'D'E Results: sldvdemao_cruise_control_fxp_fixed — O >
- R
Back to summary

sldvdemo_cruise_control_fxp_fixed/Fixed-Point Controller/Suml
Owverflowr ERROR - View test case

Derived Ranges:
Qutport 1: [-128..127.99609375]

To more fully understand this error, click the two blocks that provide the inputs to the
Sum block. In the Simulink Design Verifier Results window, view their derived ranges:

* The third Outport from the Bus block has a range of [0..256].
* The Outport from the Switch block has a range of [0..256].

You can see that the sum operation for these signal ranges can compute a value that
exceeds the range [-128..128] for the Outport of the Sum block.

Detect Integer Overflow and Division-by-Zero Errors

The analysis reports the overflow error on the Sum block. The analysis does not
propagate this error and assumes that the Sum block output is within the valid range
for any subsequent computations.

Click the PI Controller subsystem, outlined in green. None of the blocks in the PI
Controller subsystem can produce overflow or division-by-zero errors. When the
software analyzes the PI Controller subsystem, it ignores the overflow error from the
Sum block and assumes that the inputs to the subsystem are valid.

Keep the sldvdemo cruise control fxp fixed model open. In the next section, you
create the harness model to see the test case that generates the Sum block overflow
error.

Review the Harness Model

To see the test cases that demonstrate the errors, generate the harness model from the
Simulink Design Verifier Results window:

1

In the sldvdemo cruise control fxp fixed model, open the Fixed-Point
Controller subsystem.

Click the Sum block, outlined in red, that provides the error input to the PI Controller
subsystem.

The Simulink Design Verifier Results window displays information that an overflow
error occurred.

In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model containing the test case with the signal values
that cause this overflow error.

In the harness model, the Signal Builder dialog box opens, with Test Case 2
displayed.

Click the Start simulation button to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block in the
Fixed-Point Controller subsystem.

For more information, see “Simulink Design Verifier Harness Models” on page 13-18.

6-29

6 Detecting Design Errors

6-30

Review the Analysis Report

To view an HTML report containing detailed information about the analysis report for the
sldvdemo cruise control fxp fixed model:

1 In the Simulink Design Verifier Results window, to redisplay the results summary,
click Back to summary.

2 Click Generate detailed analysis report.
The software generates a detailed analysis report that opens in a browser.

For the sldvdemo_cruise control fxp fixed model, the Design Error Detection
Objectives Status chapter of the report provides detailed results in two categories:

* Objectives Proven Valid — Model objects that did not produce errors

* Objectives Falsified with Test Cases — Model objects for which test cases
generated errors

For more information, see “Simulink Design Verifier Reports” on page 13-38.

See Also

More About

. “Design Error Detection” on page 6-60
. “Detect Integer Overflow in a Model with Complex Inputs” on page 6-74

Check for Specified Minimum and Maximum Value Violations

Check for Specified Minimum and Maximum Value
Violations

In this section...

“Limitations of Checking Specified Minimum and Maximum Value Violations” on page 6-
31

“About This Example” on page 6-32
“Create the Example Model” on page 6-32
“Analyze the Model” on page 6-34

“Review the Analysis Results” on page 6-34

During a design error detection analysis, the software checks the specified minimum and
maximum values on intermediate signals throughout the model and on the output ports.
These values define the design ranges.

The analysis checks for specified minimum and maximum values on:

« Simulink block outputs, with the exception of the limitations described in the next
section

* Simulink.Signal objects

» Stateflow data objects

* MATLAB for code generation data objects

* Global data store writes

If the analysis detects that a signal exceeds the design range, the results identify where in
the model the errors occurred. In addition, you can generate a harness model that
contains test cases that demonstrate how the error occurred.

Limitations of Checking Specified Minimum and Maximum
Value Violations

If you analyze a model checking if specified minimum and maximum values are exceeded,
the software cannot check minimum and maximum values specified on:

* Any Mux block with an output connected to a Selector block

6-31

6 Detecting Design Errors

6-32

* Merge block inputs

To work around this limitation, use a Simulink.Signal object on the Merge block
output and specify the range on the Simulink.Signal object.

Note For information about how a Simulink Design Verifier analysis handles specified
minimum and maximum values on input ports, see “Minimum and Maximum Input
Constraints” on page 11-2.

About This Example

In this section, you create and analyze a model that has specified design minimum and
maximum values on:

* The input ports

* The output ports of two of the intermediate blocks

The design error detection analysis identifies blocks where the output values exceed the
design range. If the analysis detects this error, this example demonstrates how the
analysis uses the specified minimum and maximum values when continuing the analysis.

Create the Example Model

Create the model for this example:

1 In the MATLAB toolstrip, on the Home tab, select New > Simulink Model.

2 From the Simulink Commonly Used Blocks library, add the following blocks to the
model and assign the indicated parameter values.

Block Tab Parameter Value
Inport Signal Attributes |Minimum 0
Inport Signal Attributes |Maximum 5
Gain Main Gain 5
Gain Signal Attributes |Output minimum |0
Gain Signal Attributes |Output maximum |20
Gain Signal Attributes |Output data type |int16

Check for Specified Minimum and Maximum Value Violations

9

Block Tab Parameter Value
Saturation Main Upper limit 25
Saturation Main Lower limit -25
Saturation Signal Attributes |Output minimum |- 25
Saturation Signal Attributes |Output maximum |25
Outport No changes

Connect the four blocks as shown.

O/ F——

Im1 . 5 Ot
Gain Saturation

To display the specified minimum and maximum values, on the Debug tab, select
Information Overlays > Signal Data Ranges.

On the Modeling tab, click Model Settings.

In the Configuration Parameters dialog box, on the Solver pane, under Solver
selection:

a Set Type to Fixed-step.

The Simulink Design Verifier software does not support variable-step solvers.
b Set Solverto discrete (no continuous states).
On the Design Verifier pane, set Mode to Design error detection.
On the Design Verifier > Design Error Detection pane:

a Select Specified minimum and maximum value violations.
b Clear the Integer overflow and Division by zero parameters.

In this example, you check only for intermediate minimum and maximum violations.
To save these settings and exit the Configuration Parameters dialog box, click OK.

10 Save the model and name it ex_interim_minmax.

6-33

6 Detecting Design Errors

Analyze the Model

To analyze the example model to identify any intermediate signals that violate the
specified minimum and maximum values, perform design error detection analysis.

On the Design Verifier tab, click Detect Design Errors.
After the analysis is complete:

* The software highlights the model with the analysis results.

0.5 : 0..20] 7| [F23.25
n[1 [1 :_-'". [-25..25]

Il . Out
Gain Saturation

The Simulink Design Verifier Results dialog box opens and displays a summary of the
analysis.

'p'i Results: ex_interim_minmax - O >

Design error detection completed normally.
1/2 objective is valid.
1/2 objective is falsified.

Results:

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDE)
* Create harness model

* Export. test cases to Simulink Test

Review the Analysis Results

» “Review Results on the Model” on page 6-35
* “Review the Harness Model” on page 6-36
* “Review the Analysis Report” on page 6-37

6-34

Check for Specified Minimum and Maximum Value Violations

Review Results on the Model

In the model window, the Gain block is colored red and the Saturation block is colored
green. This indicates that:

At least one objective associated with the Gain block was falsified. For this example,
the analysis falsified exactly one objective.

All objectives associated with the Saturation block were satisfied. For this example,
the analysis satisfied exactly one objective.

To understand these results:

1

Click the Gain block.

The Simulink Design Verifier Results window shows that the design range for the
output was [0..20], but the analysis detected an error and generated a test case that
demonstrates that error. Because the design range for the input block is [0..5], when
the input to the Gain block is 5, the output is 25, which exceeds the specified
maximum value on that port.

The analysis computes and displays the derived range to help you understand how
the design range was exceeded.

'D'E Results: ex_interim_minmax — O >
w 9
Back to summary
ex_interim_minmax/Gain
Design Range: [0..20] ERROR - View test case

Derived Ranges:
Qutport 1: [0..25]

Click the Saturation block.

The Simulink Design Verifier Results window shows that the output of the Saturation
block never exceeded the design range [-25..25]. The input to the Saturation block
never exceeded [0..25], which is the derived range that the analysis propagated from
the Gain block.

6-35

6 Detecting Design Errors

6-36

'D'ﬁ Results: ex_interim_minmax — O >
~ 9
Back to summary

ex_interim_minmax/Saturation
Design Range: [-25..25] VALID

Derived Ranges:
Cwutport 1: [0..25]

Review the Harness Model

When the analysis completes, you can create a harness model contains the test cases that
result in errors.

For the example model, view the test case that caused the design range error in the Gain
block:

After the analysis completes and the model is highlighted, click the Gain block.
2 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model named ex_interim minmax_harness and
opens the Signal Builder block in the harness model that contains the test case.

In the Signal Builder block, one test case, whose signal value is 5, caused the output
of the Gain block to be 25, which exceeds the specified maximum of 20.

3 Before you simulate this test case, in the Configuration Parameters dialog box, on the

Diagnostics > Data Validity pane, set Simulation range checking to warning or
error.

Setting this parameter specifies the diagnostic action to take if Simulink detects
signals that exceed specified minimum or maximum values during simulation.

» Ifyou specify warning, the simulation displays a warning message and continues.
+ Ifyou specify error, the simulation displays an error message and stops.

Check for Specified Minimum and Maximum Value Violations

4 Click OK to save your change and close the Configuration Parameters dialog box.

In the Signal Builder block window, click Start simulation to simulate the model
with this test case.

As expected, in the MATLAB window, the simulation displays a warning or error that
the output value of the Gain block exceeds the specified maximum.

Review the Analysis Report

You can also generate an HTML report containing detailed information about the analysis
report for the ex_interim minmax model. To create this report, in the Simulink Design
Verifier Results window, click Generate detailed analysis report. The analysis report
opens in a browser.

In the analysis report, the Design Error Detection Objectives Status chapter of the
report provides detailed results in two categories:

* Objectives Proven Valid — The output values for the Saturation block are always
within the design range.

* Objectives Falsified with Test Cases — The output values for the Gain block violated
the design range.

6-37

6 Detecting Design Errors

Detect Out of Bound Array Access Errors

6-38

In this section...

“Design Error Detection for Out of Bound Array Access” on page 6-38
“Detect Out of Bound Array Access Example Model” on page 6-39

“Limitations of Support for Out of Bound Array Access Design Error Detection” on page
6-44

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier design error detection analysis detects out of bound array access
errors in your model. In simulation, when your model attempts to access an array element
using an invalid index, an out of bound array access error occurs.

To detect out of bound array access errors in your model:

1 On the Design Verifier tab, in the Mode section, select Design Error Detection.

Click Error Detection Settings.

3 In the Configuration Parameters dialog box, in Design Error Detection pane, select
Out of bound array access.

4 Click OK.
Click Detect Design Errors.

The Simulink Design Verifier log window opens, showing the progress of the analysis.

When the analysis is complete:

* The software highlights the model with the analysis results.

* The Simulink Design Verifier Results dialog box opens and displays an analysis
summary.

Note If a model contains out of bound array access error, after the first occurrence of
array access, Simulink Design Verifier assumes that the array index is within bounds for
the remaining analysis. Hence, design error detection objectives that are analyzed after
this assumption may be reported as valid, even if the design errors occur in the model.

Detect Out of Bound Array Access Errors

Detect Out of Bound Array Access Example Model

This example shows how to detect out of bound array access errors and review the
analysis results. In the sldvdemo_array bounds example model, the Computelndex
MATLAB Function block uses the input signal values to determine range of indices with
minimum minIdx and maximum maxIdx. The ArrayOp Matlab, ArrayOp MAL, and
ArrayOp_ SF blocks use the set of integer indices between minIdx and maxIdx to access
array elements and perform array operations.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo array bounds');

6-39

6 Detecting Design Errors

Simulink Design Verifier
Design Error Detection for Out of Bound Array Access

U

| minldx 4 ¥ —h-

fun

ol mizneld

@ [T ArrayOp_Matlab

Y

h 4

rmanlde

min } —
Id%JD ¥

maxhdx

R
AmrayOp_MAL

¥

fon maxlde

Computelndex

min| ¥
|d£f]D y—»(3)

mazddx

¥

k4

h 4

ArrayOp_SF

This example shows you how to statically detect out of bound array errors using Simulink Design Verifier.

This model contains errors that result from using 1-based indices in a 0-based Stateflow array.

Run View Options More Information
(double-click) (double-click) ({double-click)

View Documentation

Copyright 2010-2012 The MathWaorks, Inc.

6-40

Detect Out of Bound Array Access Errors

Step 2: Perform Design Error Detection Analysis

The analysis options in the model are preconfigured for out of bound array access error
detection. To view these options, in the Simulink Editor, double-click the View Options
button.

To perform design error detection analysis, in the Simulink Editor, double-click the Run
button. The Simulink® Design Verifier™ Results Summary window opens that displays
the progress of the analysis. When the analysis completes, the example model is
highlighted with the analysis results.

a LY
[f2et]
| minldi 4'; b —h-
fun Out1
P el dze
@ [12e4] AmrayOp_Matlab
In —
bl
[f2ed] =,
minldkx > minl@ Yoy—»{(2)
pu A () outz
[12e4] fon el db .

Out3

=
¥y ¥ é!r

Step 3: Review Analysis Results

To view the analysis results inside the chart, double-click the ArrayOp SF Chart block
that is highlighted in red.

6-41

6 Detecting Design Errors

|Pa|sldvdemeo_array_bounds b EArra}rOp_SF

6-42

. PL Results: sldvdemo_array_bounds — O >
™
y @
D | ﬁ: Back to summary

en: Array bounds: u ERROR - View test case

y = u[maxl|dx] - u[minldx];

ArrayOp_SF.Diff

Array bounds: u ERROR - View test case

Simulink Design Verifier detects that the index out of bound errors occurs in array u in
state Diff.

Step 4: Create Harness and Simulate Test Cases

Click the first View test case link. Simulink Design Verifier creates and opens a harness
model that contains test cases, that demonstrate out of bound array access errors. In the
Signal Builder dialog box, click Start simulation to simulate the harness model with Test
Case 2.

The simulation stops before entering the state Diff. The Stateflow® Debugger opens. The
following error is shown:

Attempted to access index 4 of u with smaller dimension sizes. The
valid index range is 0 to 3. This error will stop the simulation.
State 'Diff' in Chart 'sldvdemo_array bounds harness/Test Unit
(copied from sldvdemo array bounds)/ArrayOp SF': y = u[maxIdx] -
u[lminIdx];

Keep the Stateflow® Debugger open at this breakpoint. In the
sldvdemo _array bounds harness model, hold your cursor over the Diff state to see
the data values at this simulation breakpoint.

Detect Out of Bound Array Access Errors

Diff
en:

y = u[maxldx] - u[minldx];

®

Data used by Diff:
maxIdx =1
minldx = 4

=

[QS

i
[y

y=0

Using Test Case 2 input signal values, the Computelndex MATLAB Function block
determines the range of array indices to be 1:4. One-based indexing is consistent with
MATLAB syntax, so these indices are valid for the ArrayOp Matlab MATLAB Function
block and the ArrayOp MAL Stateflow® chart.

The ArrayOp SF Stateflow® chart uses C as the action language, which does not support
one-based indexing. Thus, 1:4 is not a valid index range for array access in the chart. The
valid index range for array access in the chart is 0:3, as reported by the error message.
When either maxIdx or minldx evaluates to 4, an out of bound array access error occurs

6-43

6 Detecting Design Errors

6-44

in the ArrayOp SF Chart block. For more information on zero-based indexing support, see
“Differences Between MATLAB and C as Action Language Syntax” (Stateflow).

Limitations of Support for Out of Bound Array Access Design
Error Detection

Inf Index Values

Design error detection does not support indexing by Inf. If your model attempts to
access an array using an index value that evaluates to Inf, design error detection does
not report an out of bound array access error, but in simulation, an out of bound array
access error occurs.

Index Vector Block with Scalar Data Input

Out of bound array access design error detection does not support Index Vector blocks
with scalar data inputs. If your model includes an Index Vector block that specifies a
scalar data input instead of a vector data input and the control input causes an out of
bounds array access, design error detection does not report an error, but an error occurs
in simulation.

See Also

More About

. “Design Error Detection for Out of Bound Array Access” on page 6-62

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

Detect Non-Finite, NaN, and Subnormal Floating-Point
Values

To detect occurrences of nonfinite, NaN, and subnormal floating-point values in a model:

On the Design Verifier tab, in the Mode section, select Design Error Detection.

Click Error Detection Settings.

In the Configuration Parameters dialog box, in Design Error Detection pane:

a Select the check box for “Non-finite and NaN floating-point values” on page 15-
56.

b Select the check box for “Subnormal floating-point values” on page 15-56.

To apply these settings, click OK and close the Configuration Parameters dialog
box.

4 Click Detect Design Errors.

Simulink Design Verifier analyzes the model to detect the occurrences of nonfinite, NaN,
and subnormal floating-point values.

After the analysis is complete:

* The software highlights the model with the analysis results.
* The Results Summary windows displays the summary of the analysis.

Assumptions and Limitations

When you analyze a model and select “Non-finite and NaN floating-point values” on page
15-56, the software assumes that the floating-point input values and the tunable
parameter values are finite.

When you analyze a model and select “Subnormal floating-point values” on page 15-56,
the software assumes that the floating-point input values and the tunable parameter
values are normal.

Models that use double-precision floating-point signals take more time to analyze than
similar models that use single-precision floating-point signals. As a result, models that use
double-precision floating-point signals might time out whereas similar models that use
single-precision floating-point signals complete their analysis. To improve analysis

6-45

6 Detecting Design Errors

6-46

performance, consider specifying minimum and maximum values that mimic
environmental constraints on root-level Inport blocks.

If the model contains cast operations between floating-point signals and multiword fixed-
point signals, the analysis might not be able to decide all objectives.

Run Design Error Detection Analysis to Detect Floating-Point
Errors

This example shows how to detect nonfinite, NaN, and subnormal floating-point values in
the sldvexFloatingPointErrorChecks example model. The model consists of
floating-point arithmetic operations that result in an error. Perform design error detection
analysis to detect these errors in the model.

1. Open the Model

This example model consists of Add and Divide blocks that handle floating-point
calculations. The design error detection analysis detects the occurrences of floating-point
errors in the model and reports the results.

open_system('sldvexFloatingPointErrorChecks");

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

Simulink Design Verifier
Design Error Detection for Non-Finite, NaN, and Subnormal Floating-Point Values

|
I -
Divide outt
1} - I_’
int » 7 ':::?\——"'
2} |+ Relational » — out
inz >+ Operator Switch
Add

This example shows how to detect non-finite, NaN, and subnormal floating-point values by using
Simulink Design Verifier.

This model contains errors that result from floating-point arithmetic operations.

Run View Options
(double-click) (double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options

Copyright 2018 The MathWorks, Inc.

2. Perform Design Error Detection Analysis

The model is preconfigured with Non-finite and NaN floating-point values and
Subnormal floating-point values options set to On. For more information see “Design

Verifier Pane: Design Error Detection” on page 15-52.

6-47

6 Detecting Design Errors

To perform design error detection analysis, on the Design Verifier tab, in the Mode
section, select Design Error Detection. Click Detect Design Errors.

The software analyzes the model for floating-point errors and displays the results in the
Results Summary window. The result indicates that 4 out of 6 objectives are falsified.

3. Review Analysis Results

a. Click Highlight analysis results on model. The model blocks that result in floating-
point errors are highlighted in red.

b. Click the Add block highlighted in red. The Result Inspector displays the summary of
the floating-point error objectives.

PL Results: sldvexFloatingPointErrarChecks — O X
: v
Back to summary
(1} *

in1 sldvexFloatingPointErrorChecks [Add

+ Floating-point error Objectives
- +/-Infinity Error - needs simulation - View test case
in2 P+ ViEw e

MNaM Valid

Subnormal value Valid

Add

Derived Ranges:

Outport 1:[-Inf..Inf]

c. Click the Division block highlighted in red. The Result Inspector displays the summary
of the floating-point error objectives.

6-48

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

9} Results: sldvexFloatingPointErrarChecks

Back to summary

i

i

sldvexFloatingPointErrorChecks/Divide

Floating-point error Objectives

out1 +/-Infinity
MNaM

Error - needs simulation

- View test case
Error - needs simulation - View test case
Subnormal value Error - needs simulation - View test case

Derived Ranges:

Qutport 1:[-Inf..Inf]

4. View Detailed Analysis Report

To view the detailed analysis report, in the Results Summary window, click HTML. The
report displays the summary of all occurrences of floating-point errors in the model.

6-49

6 Detecting Design Errors

Chapter 3. Design Error Detection Objectives Status
Table of Contents

Objectives Valid
Objectives Falsified - Needs Simulation

Objectives Valid
= Type Nodel Item Description IAnalysis Time (sec)|Test Case
2 Floating-point error |Add [Nal 14 In'a
3 Floating-point error [Add Subnommal value 14 In'a
Objectives Falsified - Needs Simulation
= Tvpe Nodel Item Description IAnalysis Time (sec)|Test Case
1 Floating-point error |Add -/ -Infinity 39 2
2 [Floating-point error [Divide -/ -Infinity ER 11
o Floating-point error [Divide Paly 190 4
10 [Floating-point error [Divide Subnormal value 114 El
5. Clean Up

To complete this example, close the model.

close system('sldvexFloatingPointErrorChecks', 0);

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-52
. “Simulink Design Verifier Options” on page 15-2

6-50

Detect Data Store Access Violations

Detect Data Store Access Violations

Simulink Design Verifier design error detection analysis identifies unintended sequences
of data store reads and writes that occur during simulation. The analysis detects these
data store access violations:

* Read-before-write

* Write-after-read

* Write-after-write

To detect data store access violations in your model:

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

In the Configuration Parameters dialog box, in the Design Error Detection pane,
select “Data store access violations” on page 15-58. Click OK.

4 Click Detect Design Errors.
After the analysis is complete, the software highlights the model with the analysis results
and the Results Summary window displays the summary of the analysis.

Detect Data Store Access Violations in a Model

This example shows how to detect data store access violations and review the analysis
results. The sldvexDataStoreAccessViolations example model consists of Data
Store Memory blocks that define the alpha and beta data stores. In the example model,
the Write Subsystem writes the data to the data store by using Data Store Write blocks
and the Read Subsystem reads the data from the data store by using the Data Store
Read blocks.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvexDataStoreAccessViolations');

6-51

6 Detecting Design Errors

Simulink Design Verifier
Detect Design Error for Data Store Access Violations

alpha beta
Diata Store Data Store
Memory Memory1
In3 In3 Ot
In2
Write Subsystem Read Subsystern

This example shows how to detect data store access violations using Simulink Design Verifier.

This model contains a read-before-write viclation that resulis from the "beta” data store not being

written on certain execution paths.

Copyright 2018 The Math\Works, Inc.

Step 2: Configure Analysis Options to Detect Data Store Access Violations
The model is preconfigured with the Data store access violations parameter set to On.
Step 3: Perform Design Error Detection Analysis

On the Design Verifier tab, click Detect Design Errors. Simulink Design Verifier
analyzes the model for data store access violations. After the analysis completes, the
Results Summary window displays that one objective was falsified.

Step 4: Review Analysis Results
The model is highlighted with the analysis results.

(1) Open the Read Subsystem and click Data Store Readl block that is highlighted in
red. The Results Inspector window displays the Read-before-write objective that violates
the data store access order.

6-52

Detect Data Store Access Violations

alpha

*a

beta

Data Store

Read1

L Back to summary
~| sldvexDataStoreAccessViolations /Read Subsystem/Data Store Readl
=10

Ini Out2 Data store access violation Objectives
Read-before-write Error - needs simulation - View test case Justify

Derived Ranges:

Qutport 1:[0..5]

(2) To view the test case that replicates the error, click View test case. The harness
model and the Signal Builder block open that displays the test case.

(3) To simulate the test case, in the Signal Builder block, click Start simulation. After
the simulation completes, the Diagnostic Viewer window displays this warning message:

The block 'sldvexDataStoreAccessViolations harness/Test Unit (copied
from sldvexDataStoreAccessViolations)/Read Subsystem/Data Store
Readl' is reading from the data store
'sldvexDataStoreAccessViolations harness/Test Unit (copied from
sldvexDataStoreAccessViolations)/Data Store Memoryl' before any
blocks have written to this entire region of memory at time 0.0. For
performance reasons, occurrences of this diagnostic for this memory
at other simulation time steps will be suppressed.

Step 5: Fix the Data Store Access Violation Error

The read-before-write objective results in error because no block has been written to the
"beta" data store before the read operation executes.

Open the Write Subsystem and double-click Write "alpha".Inthe Write "alpha"
subsystem, only the "alpha" data store is written with a constant value. Hence, the read-
before-write data store access violation occurs for the "beta" Data Store Read block.

To fix the error, in the Write "alpha" subsystem, add a Constantl block and write its

value to "beta" data store by using the Data Store Write block (highlighted in figure
below).

6-53

6 Detecting Design Errors

6-54

Write "alpha" and "beta" Write "alpha" *
(] (::l ﬁ. sld'.rexDataStnre.ﬁ.ccess'l.fiDIatinns b Wr'rte Subsystem b Wr'rte "alpha”
G}" alse |}
IE' Action Paort
= g B alpha
Constant Data Store

Write
|:| 5 | beta

Constant1 Data Store
Write1

On the Design Verifier tab, click Detect Design Errors. After the analysis completes,
the software reports that all the objectives are valid.

See Also

* “Data Store Basics” (Simulink)
* “Detect Data Store Access Violations”

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-52

Filter Objectives by Using Analysis Filter Viewer

Filter Objectives by Using Analysis Filter Viewer

Filtering model objects from design error detection or test generation analysis allows you
to focus on a subset of objects for Simulink Design Verifier analysis. If you have a large
model, there can be model objects that take a long time to analyze or model objects that
you can manually prove do not result in errors. You can exclude these objects from
analysis by using a coverage filter file. You can add a coverage filter file by opening the
Configuration Parameters window, clicking Design Verifier, and under Advanced
parameters, selecting “Ignore objectives based on filter” on page 15-22. Select your
coverage filter file for the Filter file. For more information on coverage filter file, see
“Creating and Using Coverage Filters” (Simulink Coverage).

After you perform design error detection or test generation analysis, you can justify the
falsified objectives by using the Analysis Filter viewer. When you edit the coverage filter
by using Analysis Filter viewer, you can update the Simulink Design Verifier report and
highlight the analysis results on the model without reanalyzing the model. For detailed
example on how to filter objectives, see “Exclude and Justify Objectives for Design Error
Detection” on page 6-67.

Use the Analysis Filter Viewer to Edit Coverage Filter Files

After analyzing your model, you can use Analysis Filter viewer to justify the falsified
objectives and update the coverage filter file.

You can open the Analysis Filter viewer from the Results Summary window or from the
Results Inspector window.

* In the Results Summary window, click Open filter viewer.

6-55

6 Detecting Design Errors

6-56

Design error detection completed normally.

3/6 objectives valid

1/6 objective falsified - needs simulation
1/6 objective excluded

1/6 objective justified

Results:

I* Open filter viewer |
* Highlight analysis results on maodel
* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)
* Create harness model

» Export test cases to Simulink Test

In the Results Inspector window,

To see a justified objective, click View.

To justify objective that results in error, click Justify.

| "i Results: sldvexControllerintegerOverflow >
Py Results: sldvexC.. — O *
G - K#
!
= - | |Backto summary "~
Back to summary
|| sldvexContrellerIntegerOverflow/ Divide
sldvexControllerIntegerOverflow/Sum | .
+ | Division by zero Objectives
Integer overflow Objectives | Division by zero Error - needs simulation - View test case !Justil"s‘I I [
Overflow Justified View |
Integer overflow Objectives |
Derived Ranges: Overflow Valid
Derived Ranges:
Outport 1:[0..255] |
Cutport 1:[-32768..32767] W

In the Analysis Filter viewer, you can:

Review and manage the filter rules for analysis.

Filter Objectives by Using Analysis Filter Viewer

Load or save analysis filter files in your model.
Navigate to the model to create additional filter rules.
Add rationale description about why the objective or model object is excluded or

justified.
Analysis Filter: sldvexControllerlntegerOverflow™® — O et
Model
Name Type Mode Rationale
Abs by block path ES%s[l=y Ml (double-click ...
COverflow in "... by integer ove... | Justified - | (double-click ...
Remove rule

View in model

Selected rule Abs

Filename: H:\work\bash\filtering_objectives\sldvexControllerIntegerOverflow_filter.cvf

Save filter
Load filter

Revert Apply

Task

Action

Navigate to a model object associated with
a rule.

1 Select the rule.

2 (Click View in model. The model object

is highlighted in blue.

6-57

6 Detecting Design Errors

6-58

Task

Action

Delete a rule.

1

Select the rule.
Click Remove rule.

Save the current rules to a file.

2
1
2
3

Click Apply.
Click Save filter.

Specify a file name and folder for the
filter file and click Save.

Load an existing coverage filter file.

Click Load filter.

Navigate to the filter file and click
Open.

Highlight the model and update the current

analysis report with the current filtering
rules.

Apply or Revert any changes you have
made.

The model is highlighted with the
updated filter rules.

In the Results Summary window or in
the Results inspector window, click
HTML or PDF.

Limitations

Simulink Design Verifier does not support filtering of objectives from analysis for these

scenarios:

* Objectives associated with S-function and custom C/C++ code.

* When you perform property proving analysis.

* When you “Generate Test Cases for Embedded Coder Generated Code” on page 7-32.

See Also

More About

. “Design Verifier Pane” on page 15-12

. “Create, Edit, and View Coverage Filter Rules” (Simulink Coverage)

See Also

“Simulink Design Verifier Reports” on page 13-38

6-59

6 Detecting Design Errors

Design Error Detection

This example shows how to detect and fix a potential integer overflow.

6-60

Design Error Detection

Simulink Design Verifier
Detecting Design Errors

sfix16_En13 (D
—»
throt
———. InputBusFxp
InBus

InBus.

wfix16_End &)

target

Controller

This example shows how to detect and fix an integer overflow. Simulink Design Verifier
identifies all of the model constructs that can overflow and then either proves that such
errors cannot occur during simulation or tries to generate test cases that demonstrate
any integer overflow.

In thiz example, all but one operation are proved to be safe with regard to overflow.
The analysis generates a test case to show the one addition that could potentially overflow.

The fix in this model is easy; the block is configured to saturate on ocverflow, which is the
expected behavior. After applying the fix, running Simulink Design Verifier shows that
there is no possibility of overflow in this model.

Teggle Saturation

Copyright 2006-2012 The Math\Works, Inc.

6-61

6 Detecting Design Errors

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier
Design Error Detection for Out of Bound Array Access

u

txd]
| minldx <l yb—>»(7)
fun outl
o iz ldx
K =[‘Ix~4] ArrayOp_h atlab
In —
2 L]
[1] .
min ldx - minld@ L W 4I-
v A L) T
[13'0‘{]- fon max ldx | max dx
C omputelnd e ArrayOp_hlaL
2 L]
(1] .
L minld@ L W 4..
L) o
| =

This example shows you how to statically detect out of bound array emars using Simulink Design werifier.

This model contains enors that result from wusing 1-based indices in a O-based Stateflow array.

Run View Options More Information
{double-click) {double-click) {double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options View Documentation

Copyright 20410-2012 The hdatbilforkes, Inc.

6-62

Detect Design Errors in C/C++ Custom Code

Detect Design Errors in C/C++ Custom Code

To detect division by zero and out of bound array access errors in a model with C/C++
custom code in model blocks or Stateflow® charts, use design error detection analysis.
Simulink Design Verifier identifies the code that results in errors and then either proves
that the errors are valid or generates test cases that replicate the error.

This example shows how to detect division by zero errors in a model that consists of C/C+
+ code in a Stateflow® chart.

Step 1: Open the Model

The example model sldvexCustomCodeErrorDetectionExample contains a
Stateflow® chart that calls C/C++ custom code that uses input and output buses.

open_system('sldvexCustomCodeErrorDetectionExample');

6-63

6 Detecting Design Errors

Simulink Design Verifier
Detect Design Errors in C/C++ Custom Code

r
@ input b!SIGN.&LEIUS N I:l
co.nei nputsigna1 <input=
SIGNALBUSCreator oHALBU l—'
.

I
<upper_saturation_limit=
[I
<lower_saturation_Emit=

DD
40 —
upper_saturation_limit

imits

COUNTERBUSCreator

ower_saturation_lidtbis

LIMITBUSCreator
L2 } > }'

This model contains a stateflow chart which is calling C custom-code with buses input and output. .

Open View "
. Run View Options
Custom code sources Custom code settings n o
{double-click) {double-click) {double-click) {double-click)
Open Source Files View Custom code settings

Copyright 2018 The MathWarks, Inc.

Step 2: Perform Design Error Detection Analysis

To perform design error detection analysis, on the Design Verifier tab, click Detect
Design Errors. After the analysis completes, the Results Summary window indicates that
one objective is falsified.

Step 3: Review the Analysis Results

On the Design Verifier tab, in the Review Results section, click Highlight in Model.
To view the C/C++ run-time error objectives that resulted in the error, click on the
Simulink® Editor. The Results Inspector window displays the division by zero objectives.

6-64

Detect Design Errors in C/C++ Custom Code

iC

Back to summary
sldvexCustomCodeErrorDetectionExample

C/C++ Runtime Error Objectives

Division by zero (file Error - needs - View test case
sldvexCustomCodeErrorDetection.c, line 23) simulation

Note: When you click View test case for the Error - needs simulation objective,
Simulink® Design Verifier™ displays the test case that replicates the error. If you
simulate the test case, MATLAB® may crash during custom code analysis.

To view the HTML report, on the Design Verifier tab, click HTML Report. The Design
Error Detection Objectives Status section in the report describes the falsified objective.

Objectives Falsified - Needs Simulation

Tvpe Model Item Description %ﬂzi‘(‘;‘:’:c) Test Case
C/C++ Division by zero (file

20 |Runtime sldvexCustomCodeErrorDetectionExample |sldvexCustomCodeErrorDetection c. 21 1
Error lme 23)

Step 4: Fix Design Errors

In the example model, right-click the Saturation block that is greyed out and
Uncomment the block. Reanalyze the model, by clicking Detect Design Errors. The
results show that the C/C++ run-time objective is valid.

Step 5: Clean Up

To complete the example, close the model.

close system('sldvexCustomCodeErrorDetectionExample', 0);

6-65

6 Detecting Design Errors

Related Topics

* “Design Error Detection Objectives Status” on page 13-48
* “Design Verifier Pane: Design Error Detection” on page 15-52

6-66

Exclude and Justify Objectives for Design Error Detection

Exclude and Justify Objectives for Design Error
Detection

This example shows how to exclude a model object from Simulink® Design Verifier™
analysis by using a coverage filter file. After performing analysis, you can justify
objectives by using Analysis Filter viewer, update the filter file, and review the analysis
results.

Step 1: Open the Model

The example model sldvexFilterObjectives is a controller model that operates
according to the controller algorithm described in “Detect Design Errors in Controller
Model”.

open_system('sldvexControllerFilterObjectives');

6-67

6 Detecting Design Errors

Simulink Design Verifier
Filter Objectives for Design Error Detection Analysis

Diff Gain
(1) b_/_ »(_) »{x
Sensord - "\:J
Saturation
= [u] - ‘
| = < - Y
COT— A >t > |
el N
EhER]
Saturation Sum Relational
COperator
Divide
D ':_/_ ':_ﬂ
SensorC -
Saturation2
01
Constant Switch

Caopyright 2019 The MathWorks, Inc.

Step 2: Exclude a Model Object from Analysis

The model is preconfigured with the Ignore objectives based on filter option set to On

and a coverage filter file specified by

sldvexControllerFilterObjectives filter.cvf. The coverage filter file consists
of a rule that excludes the Abs block from the analysis. For more information on coverage
filter file, see “Creating and Using Coverage Filters” (Simulink Coverage).

On the Apps tab, under Model Verification, Validation, and Test, click Design
Verifier. Then, click Detect Design Errors. After the analysis completes, the Results

6-68

Exclude and Justify Objectives for Design Error Detection

Summary window reports that 5 objectives were processed, out of which, 3 were valid
and 2 were falsified. The summary shows that 1 objective was excluded from analysis.

Progress I
Objectives processed 5/5

Valid 3

Falsified 2

Elapsed time 1:01

Design error detection completed normally.

3/6 objectives valid
2/6 objectives falsified - need simulation
1/6 objective excluded

Results:

* Dpen filter viewer

* Highlight analysis results on model

= View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

Data saved in: sldvexControllerFilterObjectives _sldvdata.mat

in folder: H:\Documents\MATLAB\sldv_output
‘\sldvexControllerFilterObjectives

Step 3: Open the Analysis Filter Viewer

On the Results Summary window, click Open filter viewer. The Analysis Filter viewer
opens that displays the name, type, and rationale for the excluded objectives specified in

the coverage filter file.

6-69

6 Detecting Design Errors

Analysis Filter: sldvexControllerFilterObjectives - O x

Model

Name Type Mode Rationale

Abs by block path Excluded Al Design error depends on ...

Remaove rule
View in model
Selected rule
Filename: Documents\MATLAB\examples\sldvexControllerFilterObjectives_filter.cwf
Save filter
Load filter
Revert Apply

Step 4: Justify Objectives

(a) On the Results Summary window, click Highlight analysis results on model. The
model is highlighted with the analysis results. The excluded model objects are highlighted
in steel blue and the model objects that result in errors are highlighted in red.

(b)To view the excluded objectives, click Abs block and click View. The Analysis Filter
viewer opens.

(c) Click Divide block. The Results Inspector window displays a summary of the
objectives.

6-70

Exclude and Justify Objectives for Design Error Detection

Sum

Dirade

iizes..'_ sldvexControllerFilterObjectives d
~ AR
Back to summary
sldvexControllerFilterObjectives fAbs
Integer overflow Objectives
Overflow Excluded EI
Derived Ranges:
Outport 1:[-32768..32767]
4 Results: sldvexControllerFilterObjectives O X
~

Back to summary
sldvexControllerFilterObjectives | Divide

Division by zero Objectives

Integer overflow Objectives
Cwverflow Valid
Derived Ranges:

Outpart 1:[-32768..32767]

Division by zero Error - needs simulation - View test case

(d) To justify the division by zero objective, click Justify. The Analysis Filter viewer is
updated with a rule that justifies this objective. Optionally, you can update the Mode or
Rationale for the objectives.

6-71

6 Detecting Design Errors

Analysis Filter: sldvexControllerFilterObjectives® - O *
Model
Mame Type Mode Rationale
Abs by block path Excluded - Design error depends on ...
Division by zero in "Divid... by division by zero object... | Justified ~ | Due to Sum block integer... |
5 Remove rule

View in model

Selected rule

Filename: Documents\MATLAB\examples\sldvexControllerFilterObjectives_filter.cvf
Save filter

Load filter

Revert Apply

Step 5: Apply the Filter File and View Results

On the Analysis Filter viewer, click Apply. The model is highlighted with the updated
filter. The Divide block is highlighted in green because all the objectives of the block are
valid.

To save the updated filter file, in the Analysis Filter viewer, click Save Filter, enter the
name of the file, and click OK.

Note: After applying the filter, the highlighting of the model objects is as follows:

« [If all the objectives of a block are excluded or justified, it is highlighted in steel blue.
» If a block has valid and excluded or justified objectives, it is highlighted in green.

» If a block has falsified and excluded or justified objectives, it is highlighted in red.

For a detailed analysis report, in the Results Summary window, click HTML or PDF. The
Design Error Detection Objectives Status chapter reports the excluded and justified
objectives along with the valid and falsified objectives.

6-72

Exclude and Justify Objectives for Design Error Detection

Objectives Valid

s |T Model It Descripti Analysis \po ¢ c

3 Ype MMode em es5Cription Tllll@ (SEC:I es ase

4 IHTEgET _ |Suml Overflow 11 1'a
overflow

Objectives Falsified - Needs Simulation

P Model It Descripti Analysis |4

3 Ype MMode em esCcription Tllll@ (SEC:I es ase

7 Integer Sum Overflow 22 1
overflow

Reated Topics

* “Filter Objectives by Using Analysis Filter Viewer” on page 6-55
* “Detect Integer Overflow and Division-by-Zero Errors” on page 6-26

6-73

6 Detecting Design Errors

Detect Integer Overflow in a Model with Complex Inputs

This example shows how to detect integer overflow errors in a model that consists of
complex type inputs.

Step 1: Open the Model

The sldvexComplexInputs model contains SensorA, SensorB, and SensorC complex
inputs and a Control input. The SensorA and SensorB inports are constraint to Maximum
output value equal to 100.

open_system('sldvexComplexInputs');

Simulink Design Verifier
Detect Integer Overflow Errors in Model with Complex Inputs

uiritd [|:
Senﬁnr.ﬁ.
umI.EI (c)
2

Y

SensorB
) intd
uirtd (c) I
=D Ca g
oy — Contral

.

Switch

Copyright 2018 The MathWorks, Inc.

6-74

Detect Integer Overflow in a Model with Complex Inputs

Step2: Perform Design Error Detection Analysis

On the Apps tab, in the Model Verification, Validation, and Test group, select Design
Verifier.

To detect design errors, click Detect Design Errors. After the analysis completes, the
Results Summary window displays that one objective is valid and one objective is falsified.

6-75

6 Detecting Design Errors

Progress |
Objectives processed 2/2

Valid 1

Falsified 1

Elapsed time 0:17

Design error detection completed normally.

1/2 objective is valid
1/2 objective falsified - no counterexample

Results:

& Dpen filter viewer
* Highlight analysis results on model
* Detailed analysis report: (HTML) (FDF)

Data saved in:H:\Documents\MATLAB\sldv_output
in folder: \sldvexComplexInputs

Step 3: Review Analysis Results

In the Results Summary window, click Highlight analysis results on model. The Sum
block whose output results in integer overflow error is highlighted in red.

6-76

Detect Integer Overflow in a Model with Complex Inputs

) &

Sensord

D |

SensorB

D

SensorC

-

Switch

To view the analysis report, click HTML or PDF in the Results Summary window. The
Design Error Detection Objectives Status chapter lists the description of the valid and
falsified objectives.

Objectives Valid
Type Model Item Description Analysis Test Case
i P) P Time (sec) ’
4 Integer Suml Overflow 11 n'a
overflow |[—

Objectives Falsified - Needs Simulation

- Analvsis
& Type Model Ttem Description Time (sec) Test Case
7 Injrega ~ |5um Overflow 22 1
overflow

The Design Errors chapter contains the test case inputs that results in integer overflow.

6-77

6 Detecting Design Errors

Time |0
Step 1
Sensord |16+931
SensorB |26+781
SensorC [94+93;
Control |1

See also

* “Design Error Detection” on page 6-60
* “Understand the Analysis Results” on page 6-4

6-78

Generating Test Cases

* “What Is Test Case Generation?” on page 7-3

* “Workflow for Test Case Generation” on page 7-5

* “Generate Test Cases for Model Decision Coverage” on page 7-7

* “Generate Test Cases for a Subsystem” on page 7-23

* “Use Test Generation Advisor to Identify Analyzable Components” on page 7-25
* “Generate Test Cases for Embedded Coder Generated Code” on page 7-32
* “Model Coverage Objectives for Test Generation” on page 7-35

* “Enhance Model Coverage of Older Release Models” on page 7-38

* “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50

* “Analyze a Model for Enhanced MCDC Analysis” on page 7-53

» “Basic Workflow for Enhanced MCDC Analysis” on page 7-57

* “Author Custom Test Objective Workflow” on page 7-61

» “Flip Flop Test Generation” on page 7-70

* “Model Coverage Test Generation” on page 7-71

» “Test Objective Block” on page 7-72

» “Test Condition Block” on page 7-73

* “Cruise Control Test Generation” on page 7-74

* “Fuel Rate Controller Test Generation” on page 7-76

+ “Extend an Existing Test Suite” on page 7-78

* “Defining and Extending Existing Tests Cases” on page 7-85

» “Using Existing Coverage Data During Subsystem Analysis” on page 7-93
* “Creating and Executing Test Cases” on page 7-100

* “Using Specified Input Minimum and Maximum Values as Constraints” on page 7-112
* “Configuring S-Function for Test Case Generation” on page 7-114

* “Code Coverage Test Generation” on page 7-119

» “Test Generation on Model with C Caller Block” on page 7-123

7 Generating Test Cases

» “Test Generation for Custom Code in a Stateflow Chart” on page 7-125

7-2

What Is Test Case Generation?

What Is Test Case Generation?

The Simulink Design Verifier software can generate test cases that satisfy coverage
objectives for your model, including:

* “Decision” on page 7-35

* “Condition” on page 7-35

* “MCDC” on page 7-36

* “Enhanced MCDC” on page 7-36

Test cases help you confirm model performance by demonstrating how the blocks in the
model execute in different modes. When generating test cases, the software performs a
formal analysis of your model. After completing the analysis, the software provides
several ways for you to review the results.

Test Case Blocks

For customizing test cases for your Simulink models, Simulink Design Verifier provides
two blocks:

* The Test Objective block defines the values of a signal that a test case must satisfy.
* The Test Condition block constrains the values of a signal during analysis.

Test Case Functions

To customize test cases for a Simulink model or Stateflow chart, Simulink Design Verifier
provides two MATLAB functions. You can use these functions in a MATLAB Function
block. Both functions are active in generated code and in Simulink Design Verifier.

* sldv.test — Specifies a test objective.

* sldv.condition — Specifies a test condition.

These functions:

* Identify mathematical relationships for testing in a form that can be more natural than
using block parameters.

» Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

7 Generating Test Cases

* Provide access to the power of MATLAB.
* Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or sldv.condition
reference page.

Note Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier license,
you can see the blocks and functions, but they do not produce results.

Workflow for Test Case Generation

Workflow for Test Case Generation

To generate test cases for your model, use the following workflow.

Task

Description

For an example, see

1

Verify that your model is compatible
for use with Simulink Design Verifier.

“Check Compatibility of the Example
Model” on page 7-8

Optionally, use the Test Generation
Advisor to select model components
(atomic subsystems and model
blocks) for test generation. Before
test generation, you can use the
results to better understand your
model, particularly large models,
complex models, or models for which
you are uncertain of the test
generation compatibility.

“Use Test Generation Advisor to
Identify Analyzable Components” on
page 7-25

If you have Stateflow objects in your
model, in the Configuration
Parameters dialog box, on the
Diagnostics > Stateflow pane, set
Unreachable execution path to
error.

Optionally, instrument your model
with blocks or MATLAB functions
that specify test objectives and test
conditions.

“Customize Test Generation” on page
7-19

Specify options that control how
Simulink Design Verifier generates
test cases for your model.

“Configure Test Generation Options”
on page 7-9

Execute the Simulink Design Verifier
analysis.

“Analyze the Example Model” on
page 7-10 and “Reanalyze the
Example Model” on page 7-21

Review the analysis results.

“Review Analysis Results” on page 7-
10

7-5

7 Generating Test Cases

See Also

More About

. “Flip Flop Test Generation” on page 7-70

. “Cruise Control Test Generation” on page 7-74

. “Fuel Rate Controller Test Generation” on page 7-76

Generate Test Cases for Model Decision Coverage

Generate Test Cases for Model Decision Coverage

In this section...

“Construct the Example Model” on page 7-7

“Check Compatibility of the Example Model” on page 7-8
“Configure Test Generation Options” on page 7-9
“Analyze the Example Model” on page 7-10

“Review Analysis Results” on page 7-10

“Customize Test Generation” on page 7-19

“Reanalyze the Example Model” on page 7-21

“Analyze Contradictory Models” on page 7-22

Construct the Example Model

Construct a model for this example:

Create a Simulink model.
2 Copy the following blocks into your empty model window:
* From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls.

* From the Sources library, two Constant blocks to serve as Switch block data
inputs.

* From the Signal Routing library, a Switch block to provide simple logic.
* From the Sinks library, an Outport block to receive the output signal.

3 In your model, double-click one of the Constant blocks and specify its Constant
value parameter as 2.

4 Connect the blocks so that your model appears similar to the following diagram.

7-7

7 Generating Test Cases

1

Constant

.":—\
CoOr—] v+
Il . Cutl
™
Switch
2
Constanti

5 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.

6 On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings.

7 In the Configuration Parameters dialog box, select Solver pane. In the Solver
selection:
+ Set the Type option to Fixed-step.
* Set the Solver option to Discrete (no continuous states).

Simulink Design Verifier analyzes only models that use a fixed-step solver.
Click OK to save your changes and close the Configuration Parameters dialog box.
Save your model with the name ex generate test cases example.

Check Compatibility of the Example Model

Every time Simulink Design Verifier analyzes a model, before the analysis begins, the
software performs a compatibility check. If your model is not compatible, the software
cannot analyze it.

Before you start the analysis, you can also make sure that your model is compatible with
Simulink Design Verifier software:

1 Openthe ex generate test cases example model.
2 On the Design Verifier tab, click Check Compatibility.

Generate Test Cases for Model Decision Coverage

The software displays the log window, which states whether or not your model is

compatible for analysis.

The model you just created is compatible.

Simulink Design Verifier Results Summary: ex_generate_test_cases_example >

21-Mov-2018 17:20:53

Checking compatibility for test generation: model 'ex_generate_test_cases_example'
Compiling modd.g.done

Building model representation...done

21-Nowv-2018 17:20:58
'ex_generate_test cases_example' is compatible for test generation with Simulink Design
Verifier.

Save Log Generate Tests Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model

contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, the unsupported objects are
stubbed out. The results of the analysis can be incomplete.

For detailed information about automatic stubbing, see “Handle Incompatibilities with

Automatic Stubbing” on page 2-8.

Configure Test Generation Options

Configure Simulink Design Verifier to generate test cases that achieve 100% decision

coverage for the ex _generate test cases example model:

1 Openthe ex generate test cases example model.

7 Generating Test Cases

On the Design Verifier tab, in the Mode section, select Test Generation.

Click Test Generation Settings.

In the Configuration Parameters dialog box, on the Test Generation pane, set the
Model coverage objectives parameter to Decision.

For this example, the analysis generates test cases that record only decision
coverage.

The Test suite optimization parameter is set by default to Auto. If you want to
generate fewer but longer test cases, select LongTestcases for the Test suite
optimization parameter.

Click OK to save your changes and close the Configuration Parameters dialog box.
Save the ex generate test cases example model.

Analyze the Example Model

On the Design Verifier tab, click Generate Tests. The Simulink Design Verifier analyzes
your model to generate test cases.

During the analysis, the Results Summary window shows the progress of the analysis. It

displays information such as the number of test objectives processed and which objectives
are satisfied.

Review Analysis Results

When the software completes its analysis, the Results Summary window displays these
options for reviewing the results.

7-10

Generate Test Cases for Model Decision Coverage

Simulink Design Verifier Results Summary: ex_generate_test_cases_example *
Progress |
Objectives processed 22
Satisfied 2
Unsatisfiable 0
Elapsed time 0:12
Test generation completed normally.
2/2 objectives are satisfied.
Results:
* Highlight analysis results on model
= View tests in Simulation Data Inspector
= Detailed analysis report: (HTML) (FDF)
* Create harness model
* Export test cases to Simulink Test
* Simulate tests and produce a model coverage report
Data saved in: ex_generate test cases example sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘ex_generate test cases example
View Log Close

The following sections describe how you can review the analysis results:

* “Review Analysis Results on the Model” on page 7-12
* “Review Detailed Analysis Report” on page 7-13

7-11

7 Generating Test Cases

» “Review Harness Model” on page 7-15

* “Simulate Tests and Produce a Model Coverage Report” on page 7-16

* “View sldvData File” on page 7-18

* “Review Analysis Results in the Results Summary Window” on page 7-18

Review Analysis Results on the Model

Highlight the analysis results on the example model:

1 In the Results Summary window for the ex generate test cases example
analysis, click Highlight analysis results on model.

Constant —
L _B.
CO— D
In1 Ot 1
™0
2
Constanti

The Switch block is highlighted in green, which indicates that the Switch block has
test cases that satisfy its test objectives.

The Simulink Design Verifier Results window opens. As you click objects in the model,
this window changes to display detailed analysis results for that object. By default,
the Simulink Design Verifier Results window is always the topmost visible window. To

allow the window to move behind other window, click @ and clear Always on top.

7-12

Generate Test Cases for Model Decision Coverage

'B'i Results: ex_generate_test_cases_example — O >

Test generation completed normally.
2/2 objectives are satisfied.

Results:

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)
* Create harness model

* Export test cases to Simulink Test
* Sirmulate tests and produce a model coverage report

2 Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis generated
test cases for both test objectives:

* trigger > threshold
* trigger < threshold

'Di Results: ex_generate_test_cases_example

Back to summary
ex_generate_test cases_example/Switch

trigger = threshold false (output is from 3rd input
port)

trigger > threshold true (output is from 1st input
port)

SATISFIED - View test case

SATISFIED - View test case

For more information about highlighted analysis results on a model, see “Highlighted
Results on the Model” on page 13-2.

Review Detailed Analysis Report

Create a detailed HTML analysis report:

7-13

7 Generating Test Cases

7-14

In the Simulink Design Verifier Results Summary window, in Detailed analysis report,
click HTML.

The HTML report opens in a browser window.

The report includes the following Table of Contents. Click a hyperlink to navigate to
a section in the report.

Table of Contents

1. Summary
Analysis Information

Test Objectives Status
Maodel ltems
Test Cases

L7 | e [|2

In the Table of Contents, click Summary to display the report's Summary chapter.

The Summary chapter lists information about the model and the status of the
objectives—satisfied or not.

In the Table of Contents, click Analysis Information to display the Analysis
Information chapter.

The Analysis Information chapter provides information about:

* The model that you analyzed.
* The options that you specified for the analysis.
* Approximations the software performed during the analysis.

In the Table of Contents, click Test Objectives Status to display the report's
Test Objectives Status chapter.

This table indicates that the analysis satisfied both test ohjectives associated with the
Switch block in the ex generate test cases example model, for which it
generated two test cases.

Under the table Test Case column, click 2 to display the Test Case 2 section.

This section provides details about a test case that the analysis generated to achieve
an objective in your model. This test case achieves test objective 1, when the Switch
block passes its third input to its output port. Specifically, the software determines
that a value of -1 for the Switch block control signal causes the block to pass its third
input as the block output.

Generate Test Cases for Model Decision Coverage

For more information about the HTML reports, see “Simulink Design Verifier Reports” on

page 13-38.

Review Harness Model

To create a harness model with test cases that satisfy the test objectives in your model, in

the Simulink Design Verifier Results Summary window, click Create harness model.

The software creates a harness model named

ex_generate test cases example harness.

Size Type

Test Case 1

=

B

=
- =5)

Ot 1

—)

Out1

Inputs

DoC

[

Text

Test Unit {copied from ex_generate test cases_sample)

Test Case Explanation

The Signal Builder block named Inputs contains the test cases. Double-click the Inputs
block to see the test cases. From the Signal Builder block, you can simulate the model

using the test cases and produce a model coverage report, as described in “Simulate

Tests and Produce a Model Coverage Report” on page 7-16.

For more information about the harness model, see “Simulink Design Verifier Harness
Models” on page 13-18.

If Analysis Generates Many Test Cases

If you have a large model, the analysis might produce a harness model that contains a
large number of test cases.

To perform a more efficient analysis and create easier-to-review results:

1 Set the Test suite optimization parameter to LongTestcases.

2 Rerun the analysis.

In the LongTestcases optimization, the analysis generates fewer but longer test cases
that each satisfy multiple test objectives.

7-15

7 Generating Test Cases

Simulate Tests and Produce a Model Coverage Report
To simulate the harness model using the generated test cases in the harness model:

1 In the harness model, double-click the Inputs block to open the Signal Builder dialog
box.

7-16

Generate Test Cases for Model Decision Coverage

[&] Signal Builder (ex_generate_test_cases_example_harness/Inputs) — O >
File Edit Group Signal Axes Help
FHE| A BRE| o o |~ L[FREE o0 om | R
Active Group: | | Test Caze 1 v @. = -~
6 In1
5
4+
3 -
2
1 -
or o
I I I I | I I |
i} 0.05 01 015 0.2 0.25 0.3 0.35 0.4
Time (sec)
~
Hame: In1
Index: 1 e
v
Click to select, Shift+click to add | In1 (#1) [¥Min ¥Max]
2

all
In the Signal Builder dialog box, click Run all ﬂ

The software simulates the harness model using both test cases, collects model
coverage information, and displays a coverage report. The coverage report indicates

7-17

7 Generating Test Cases

7-18

that the test cases record 100% decision coverage for the
ex_generate test cases example model.

You can also simulate the model without creating a harness model. In the Simulink Design
Verifier log window, click Simulate tests and produce a model coverage report.

For more information about model coverage, see “Top-Level Model Coverage Report”
(Simulink Coverage).

View sldvData File

The Simulink Design Verifier data file is a MAT-file that contains a structure named
sldvData. This structure stores all the data that the analysis gathers and produces
during the analysis. You can use the data file to conduct your own analysis or to generate
a custom report.

To view the data file, click the data file name in the log window, in this example,

ex _generate test cases example sldvdata.mat. When you click the file name, a
copy of the sldvData object is instantiated in the MATLAB workspace so that you can
review and manipulate the data.

For more information about Simulink Design Verifier data files, see “Simulink Design
Verifier Data Files” on page 13-10.

Review Analysis Results in the Results Summary Window

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis in the Results Summary window.

On the Design Verifier tab, in the Review Results section, click Load Earlier Results
or Results Summary to view the results.

For any Simulink Design Verifier analysis, from the Results Summary window, you can
perform these tasks.

Task For more information

Highlight the analysis results on the model. |“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report. “Simulink Design Verifier Reports” on page
13-38

Generate Test Cases for Model Decision Coverage

Task

For more information

Create the harness model, or if the harness
model already exists, open it.

If no test cases were generated during the
analysis, this option is not available.

“Simulink Design Verifier Harness Models”
on page 13-18

View the data file.

“Simulink Design Verifier Data Files” on
page 13-10

View the log file.

“Simulink Design Verifier Log Files” on
page 13-66

After you close your model, you can no longer view analysis results.

Customize Test Generation

You can use the Test Condition block to constrain signals in your model to certain values

during the analysis.

1 At the MATLAB command prompt, enter sldvlib to display the Simulink Design

Verifier library.

Open the Objectives and Constraints sublibrary.
Copy the Test Condition block to your model by dragging it from the Simulink Design

Verifier library to your model window.

4 In the model window, insert the Test Condition block between the Inport and Switch

blocks.
1
Constant
true _.._._\
CO—B—f +—D
In1 . Outl
*—
Switch
2

Constant1

7-19

7 Generating Test Cases

5 Double-click the Test Condition block to access its attributes.

The Test Condition block parameters dialog box opens.

6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this model,
the analysis constrains the signal values, entering the Switch block control port to
the specified range.

Block Parameters: Test Condition et
Design Verifier Test Condition (mask) (link)

Constrains signal values in Simulink Design Verifier test cases. The
"Walues' parameter constrains the block input signal. Two element
vectors specify intervals. Cell arrays specify lists. The signal must
satisfy at least one of the values or intervals at every time step.
Example Values:

true

{[01], 2, [45], 6}
{Sldv.Interval(-2, -1), Sldv.Point(0), Sldv.Interval(0, 1, '()], 1}

Parameters
Enable
Type Test Condition -

Values

[-0.1, 0.1]

Display values
Pass through style (show Outport)

Cancel Help Apply

7 Click OK to save your changes and close the Test Condition block parameters dialog
box.

7-20

Generate Test Cases for Model Decision Coverage

Save your model as ex_generate test cases with tc block and keep it open.

Reanalyze the Example Model

Analyze the ex_generate test cases with tc block model with the Test Condition
block. To observe how the Test Condition block affects test generation, compare the result
of this analysis to the result that you obtained in “Analyze Example Model” on page 5-17.

1

On the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier software displays a log window and begins analyzing
your model to generate test cases. When the software completes the analysis, the
Results Summary window displays the options for reviewing the results.

In the Results Summary window, click HTML Report.
To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier satisfied two test
objectives in the model.

In the Table of Contents, click Analysis Information. Scroll to the bottom of
this chapter, to the Constraints section.

This section lists the Test Condition block that you added to constrain the value of the
Switch block control signal to the interval [-0.1, 0.1].

In the Table of Contents, click Test Objectives Status.

This table indicates that Simulink Design Verifier satisfied both test objectives for the
Switch block through the two test cases generated.

Under the table Test Case column, click 1.

This section provides details about a test case that the software generated to achieve
an objective in your model. This test case achieves test objective 1, when the Switch
block passes its third input to its output port. Although the Test Condition block
restricts the domain of input signals to the interval [-0.1, 0.1], the software
determines that a value of -0.1 for the Switch block control signal satisfies this
objective.

To confirm that the test case achieves 100% decision coverage, open the harness
model.

Double-click the Inputs block to open the Signal Builder dialog box.

7-21

7 Generating Test Cases

7-22

all
In the Signal Builder dialog box, click Run all ﬂ

The Simulink software simulates the harness model using both test cases, collects
model coverage information, and displays a coverage report. The Summary section of
the report indicates that Simulink Design Verifier generated test cases that achieve
complete decision coverage for your example model.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and cannot analyze
the model.

You can have a contradiction if your model has Test Objective blocks with incorrect
parameters. For example, a contradiction can be an objective that states that a signal
must be between 0 and 5 when the signal is the constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that some of the objectives cannot be satisfied.

See Also

More About

. Model Coverage Test Generation on page 7-71

Generate Test Cases for a Subsystem

Generate Test Cases for a Subsystem

You can analyze a subsystem within a model. This technique is good for large models,
where you want to review the analysis in smaller, manageable reports.

This example shows how to analyze the Controller subsystem in the
sldvdemo cruise control model.

1

Open the example model:

sldvdemo cruise control

Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat
as Atomic Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.
Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem
block execution does not interleave with parent block execution. You can extract
atomic subsystems for use as standalone models.

To analyze a subsystem with Simulink Design Verifier, set the Treat as atomic unit
parameter.

After you set the parameter, other parameters become available, but you can ignore
them.
To close the dialog box, click OK.

On the Simulation tab, in the File section, select Save > Save As and save the
Cruise Control Test Generation model with a new name.

To start the subsystem analysis and generate test cases, right-click the Controller
subsystem, and select Design Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier software analyzes the subsystem. When the analysis is
complete, view the analysis results for the Controller subsystem by clicking one of
the following options:

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report

7-23

7 Generating Test Cases

7-24

* Create harness model
* Export test cases to Simulink Test
* Simulate tests and produce a model coverage report

Note After processing a certain number of objectives, if the analysis stops, or if the
analysis times out, you can use the Test Generation Advisor to better understand
which subsystems are causing the problem. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-25.

Review the results of the subsystem analysis and compare the results to the results of
the full-model analysis as described in “Analyze a Model” on page 1-4:

* The subsystem analysis analyzes the Controller as a standalone model.

* The Controller subsystem contains all the test objectives in the Cruise Control
Test Generation model. Both the analyses generate the same test cases.

Use Test Generation Advisor to Identify Analyzable Components

Use Test Generation Advisor to Identify Analyzable
Components

In this section...

“Test Generation Advisor” on page 7-25

“Test Generation Advisor Requirements” on page 7-27

“Identify Analyzable Components” on page 7-27

“Analyze and Generate Tests for Model Components” on page 7-27
“Manually Select Components for Testing” on page 7-30

Test Generation Advisor

You can use the Test Generation Advisor to select model components (atomic subsystems
and model blocks) for test generation. The Test Generation Advisor summarizes test
generation compatibility, condition and decision objectives, and dead logic for the model
and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model before test generation,
particularly for large models, complex models, or models for which you are uncertain of
the test generation compatibility. For example, you can:

* Identify components that are incompatible with test case generation.

* Identify complex components that may be time-consuming to analyze.

» Determine instances of dead logic.

* Get a snapshot of the component hierarchy.

* Get recommended test generation parameters.

7-25

7 Generating Test Cases

4 | () [» Seconds per campnnent: @
‘Component Hierarchy "E 'E Component Name: sldv_testgen_advisor

~ € sidv_testgen_advisor
hd o Subsys_Analysable
0 PI Controller el
& Subsys_Complex
0 Subsys_Incompatible

Components processed 5/5

0 Incompatible: 2 o Analyzable: 2 & Complex: 1

Summary of subcomponents in ‘sldv_tesigen_advisor’

Compenent Name Dbjmvu (Cnmllllon Dead Logic jectives Decided
Detected 'b]

sldv_testgen_advisor Q

sldv_testoen_advisor/Subsys Analyvsable (-] mnﬂ
sldv_testgen_advisor/Subsys_Analysable/P1 (] n \H NA
Controller

sldv_testgen_advisor/Subsvs Complex & 15 0 A%
sldv_testgen_advisor/Subsys_Incompatible Q 2 NA NA

Model items that are incompatible:
Message
sldv_testgen_advisor Translation failed: Algebraic loops are not supported in generated code. Use the 'ashow’ command in the
Simulink Debugger to see the algebraic loops

sldv_testgen_advisor Simulink Design Verifier failed to initialize: 'sldv_testgen_advisor/Subsys_Incompatible’ is incompatible for
design error detection with Simulink Design Verifier.

The Test Generation Advisor classifies components as analyzable, complex, or
incompatible.

* Analyzable components are compatible with Simulink Design Verifier. The preliminary

analysis indicates that Simulink Design Verifier might achieve high component
coverage.

Complex components are also compatible with Simulink Design Verifier. However, the
preliminary analysis indicates that Simulink Design Verifier might require more time
and resources to achieve high component coverage due to component complexity or

other factors. For more information, see “Sources of Model Complexity” on page 14-
2.

You cannot generate tests for incompatible components. For more information, see
“Check Model Compatibility” on page 3-2.

The results summary displays specific information about the model and each component:

* Status: The compatibility or complexity
Objectives: The number of condition and decision objectives

L]

7-26

Use Test Generation Advisor to Identify Analyzable Components

* Dead Logic Detected: The number of instances of dead logic decided during the
analysis. This might not include every instance of dead logic.

* Objectives Decided: The percentage of condition and decision objectives determined
by test cases and dead logic.

Test Generation Advisor Requirements

For analysis, your model must compile. Also, if you change the model name, you must
reload the model and reopen the Test Generation Advisor.

Identify Analyzable Components
To analyze your model using the Test Generation Advisor, follow this high-level workflow:

Open your model.

On the Design Verifier tab, in the Mode section, select Test Generation, then click
Advisor.

3 Your model compiles, and the Test Generation Advisor opens. It displays the model
hierarchy and summary table.

4 Enter a time value for Seconds per component, which limits the analysis time per
component. This value does not include time for other operations such as
compilation.

Run the analysis by clicking the Start Analysis button [> Track the analysis using the
progress indicator.

6 Determine incompatibilities, complexities and characteristics from the component
hierarchy tree and the results summary.

7 Trace from the summary to the model using the component hyperlinks.

Analyze and Generate Tests for Model Components

This example demonstrates analysis and test generation using the Test Generation
Advisor. The example model has analyzable and incompatible subsystems.

At the command line, enter fuelsys to open the fuelsys model.

Save a copy of the model in a writable location on the MATLAB path.

On the Design Verifier tab, in the Mode section, select Test Generation, then click
Advisor.

7-27

7 Generating Test Cases

9 | @ | B> | secontspercomporenc]s || @
Component Hierarchy "E 'T Component Name: fuelsys
~ 2] fuelsys

=] control logic
=] MAP Estimate Overall progress

5] Speed Estimate
(=] Throttle Estimate
E] Low Mode

5] RicH Mode @ Incompatible: 0 @ Analyzable: 0 Ay Complex: 0

Components processed 0/7

Summary of subcomponents in 'fuelsys’

= o = e
(Condition Decision) | Detected Decided (%)
167 NA NA
109 NA

=]
controller/control logic = 4
controller/Sensor correction and Fault =] 2 NA NA
=] 2 NA NA
=] 2 NA NA
=] 2 NA NA
@ 2 NA NA

In the Seconds per component text box, enter 25.

Click the Start Analysis button 1> to begin the model analysis.

6 After the analysis is complete, the component tree displays results for the overall
model and each component.

7-28

Use Test Generation Advisor to Identify Analyzable Components

9 [@B s per oo @

Component Hierarchy "E 'E Component Name: fuelsys
~) fuelsys
@ control logic
prog I
@ MAP Estimate (Cla s

@ Sspeed Estimate
@ Throttic Estimate
@ Low Mode

@ RICH Made Q) Incompatibie: 2 @ nrnayzable: 5 A\ complex: 0

Components processed 7/7

Summary of subcomponents in fuelsys'

I e il el I
Declslon) Detected Declded (%)
167 1 NA
109 1

Q N
| rate controller/eontrol logic (] 87.2%
r [] 2 0 100%
] 2 0 100%
oller/Sensor correction and Fault e 0 100%
i -] mate
e controllerFuel Calculation/Switchable @ 2 0 100%
[x] 2 NA NA
Model items that are incompatible:
Messag
fuelsys Simulink Design Verifier failed to initialize: 'fuelsys/fuel rate
controller/Fuel Calculation/Switchable
ICH Mode' is ible for design error detection with
Simulink Design Verifier.
fuelsys/fuel rate controllerFuel Caleulation/Switchable The parameter D' used by 'RICHMode/RICH Mode/Discrete Transfer Fen (with
C i ete Transfer Fen (with initial outputs)/Discrete State Space’ has a non finite value. Simulink Design

Verifier does not support non finite values.

Highlight the control logic subsystem in the component hierarchy. The analysis
was partial, in that it determined 87% of the objectives for control logic by test
cases and dead logic. To load the test generation summary, click the Show test
generation results summary link.

At the bottom of the summary, the table lists recommended test generation
parameters.

7-29

7 Generating Test Cases

7-30

9 @ I> Seconds per cornpunent: @
Component Hierarchy "E "E Component Name: control logic
hd o fuelsys
o control logic
) |
@ P Estimate TN s

o Speed Estimate

‘Components processed 77
0 Throttle Estimate

@ Low Mode
&) RICH Mode €3 Incompatible: 2 @ Analyzable: 5 Ay Complex: 0
Summary of subcomponents in ‘control logic' ~
[ComponentName [Status | Db ectives (Condition Declsion) Deld ngic Detected | Objectives Declded (%)
fuelsys Im] rate controller LLlI'l[lL\l logic @ 87.2%

Preliminary Test Generation Results

Preliminary analysis result for control logic: 95 out of 109 objectives decided.
Show test generation results summary (Partial)

Preliminary Dead Logic D

'I" objectives are dead logle in 'control logic'.

Simulink Design Verifier proved that these decision and condition outcomes cannot occur and are dead-logic in the model.

Type Model Item ptio
Decision fuelsys/fuel rate controller/control Transition: Transition trigger expression
logic/Fueling Mode/Fuel Disabled/transition(#85) F
Recommendations
Maximum analysis time(seconds) 300
Automatic stubbing of unsupported atomic blocks on
Testsuite generation strategy CombinedObjectives (Nonlinear Extended)

w

Extract this component and generate tests

Help

8 Click the Component name hyperlink. Simulink traces to the control logic
Stateflow chart.

9 Generate the full set of tests for the subsystem. In the Test Generation Advisor
summary for control logic, click Extract this component and generate tests.

Manually Select Components for Testing

If you know which model components that you want to test, you can manually select these
components. Break down the model into components of 100-1000 objectives each. Use
the sldvextract function to extract components into a new model. You can then analyze
the individual components, starting with the lowest-level subsystems.

See Also

See Also

More About

. “Model Coverage Objectives for Test Generation” on page 7-35
. “Generate Test Cases for Model Decision Coverage” on page 7-7

7-31

7 Generating Test Cases

Generate Test Cases for Embedded Coder Generated

Code

7-32

In this section...

“Generate Test Cases for Generated Code from the Block Diagram” on page 7-32

“Generate Test Cases for Generated Code by Using the Simulink Design Verifier API” on
page 7-33

“Generate Test Cases for Generated Code from the Simulink Test Test Manager” on page
7-33

When you use Embedded Coder to generate code from a model set to software-in-the-loop
(SIL) mode, you can use Simulink Coverage to record coverage metrics on the generated
code. However, the same tests that enable you to achieve 100% model coverage might not
produce 100% coverage for the generated code. Some differences between the output
code and the model can cause gaps in the code coverage compared to the model
coverage:

* Extra custom code files

* Shared utility files
¢ Code transformations, such as:

* Expression folding
* Simplified or expanded expressions
* New decision points due to lookup tables

You can use Simulink Design Verifier to generate test cases to increase coverage for
generate code. You generate test cases for generated code from the block diagram, by
using the Simulink Design Verifier API, or from the Simulink Test Test Manager. Before
you generate test cases, you need to record coverage results at least once.

Generate Test Cases for Generated Code from the Block
Diagram

After you Enable SIL Code Coverage for a Model (Simulink Coverage), simulate the
model, and record code coverage data, you use Simulink Design Verifier to generate
additional test cases for the generated code:

Generate Test Cases for Embedded Coder Generated Code

1 Ifyou have not previously recorded coverage results, enable coverage and simulate
the model.

2 Ifyou have already recorded coverage results, indicate the existing coverage data. In
the Configuration Parameters dialog box, on the “Design Verifier Pane: Test
Generation” on page 15-37 pane, select Ignore objectives satisfied in existing
coverage data and select the existing coverage data file.

3 On the Design Verifier tab, in the Mode section, select Test Generation.

+ To generate tests for code generated as top model, select Target > Code
Generated as Top Model, then click Generate Tests.

* To generate tests for code generated as model reference, select Target > Code
Generated as Model Reference, then click Generate Tests.

Simulink Design Verifier test generation proceeds according to the test generation
mode that you choose.

To learn more about the differences between code generated as top model and code
generated as model reference, see:

* “Configure and Run SIL Simulation” (Embedded Coder)

* “Code Interfaces for SIL and PII” (Embedded Coder)

* “Choose a SIL or PIL Approach” (Embedded Coder)

Generate Test Cases for Generated Code by Using the
Simulink Design Verifier API

For an example of how to programmatically generate test cases for generated code, see
“Code Coverage Test Generation”.

Generate Test Cases for Generated Code from the Simulink
Test Test Manager

If you use the Simulink Test Test Manager to record code coverage for a model set to SIL
mode, you can incrementally increase coverage for the generated code directly from the
Test Manager. For more information, see “Incrementally Increase Test Coverage Using
Test Case Generation” on page 16-11.

7-33

7 Generating Test Cases

See Also

More About

. “Support Limitations and Considerations for S-Functions and C/C++ Code” on page
3-32

7-34

Model Coverage Objectives for Test Generation

Model Coverage Objectives for Test Generation

In this section...

“Decision” on page 7-35
“Condition” on page 7-35

“MCDC” on page 7-36

“Enhanced MCDC” on page 7-36
“Relational Boundary” on page 7-36

Decision

Decision coverage in Simulink Design Verifier examines blocks and Stateflow states that
represent decision points in a model. For instance, the Switch block involves the decision
about whether the control input is greater than a threshold value. For more information,
see “Model Objects That Receive Coverage” (Simulink Coverage).

To enable decision coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

 Decision
* Condition Decision
« MCDC

For each decision in your model, Simulink Design Verifier generates test cases that satisfy
the coverage objective. For more information, see “Decision Coverage (DC)” (Simulink
Coverage).

Condition

Condition coverage examines blocks that output the logical combination of their inputs
and Stateflow transitions. For more information, see “Model Objects That Receive
Coverage” (Simulink Coverage).

To enable condition coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select one of the following:

« Condition Decision

7-35

7 Generating Test Cases

7-36

+ MCDC

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “Condition Coverage (CC)” (Simulink Coverage). .

MCDC

Modified condition decision coverage examines blocks that output the logical combination
of their inputs and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage).

To enable MCDC coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select MCDC.

For each input to a logical block and each condition in a transition, Simulink Design
Verifier generates test cases that satisfy the coverage objective. For more information,
see “MCDC Coverage for Stateflow Charts” (Simulink Coverage).

For information on how MCDC test generation in Simulink Design Verifier can deviate
from MCDC coverage recorded by Simulink Coverage, see “Modified Condition and
Decision Coverage in Simulink Design Verifier” on page 9-17.

Enhanced MCDC

Enhanced MCDC is an extension of modified condition decision coverage. For a test block,
enhanced MCDC generates test cases that avoid masking effects from downstream
blocks, so that the test block has an effect on the output.

To enable enhanced MCDC coverage, under Design Verifier > Test Generation, for
Model coverage objectives, select Enhanced MCDC. For more information, see
“Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50.

Relational Boundary

Relational boundary coverage examines blocks that have an explicit or implicit relational
operation and Stateflow transitions. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage). Test generation for relational boundary coverage
is not supported for If and Fcn blocks.

Model Coverage Objectives for Test Generation

To enable relational boundary coverage, under Design Verifier > Test Generation,
select Include relational boundary objectives.

For each relational operation in the model, Simulink Design Verifier generates test cases

that satisfy the coverage objective. For more information, see “Relational Boundary
Coverage” (Simulink Coverage).

7-37

7 Generating Test Cases

Enhance Model Coverage of Older Release Models

To enhance the model coverage of a model that you created in an older release, use a test
generation workflow or a code generation workflow. You can leverage the latest release

capabilities of Simulink Design Verifier to generate the test cases for a Model-Based
Design.

These workflows enhance model coverage.

“Enhance Model Coverage by Generating Test Cases for Older Release Model” on
page 7-39

‘! 2015b 4\‘320]83‘3

| ba l 1. Create a copy in R2018b —bl -Pa I

working folder

Design Model Copy of design

model

4. Simulate tests and
produce a model
coverage report

2. Perform test

sldvData file generation analysis

Model Hierarchy/Complexity Testl
Dl Cl ‘ s \
1. sidvexSFunctionHandhipgExample § 100% o]100% ——
1sNotZero NA 100% —
Model coverage report sldvData file

“Enhance Model Coverage by Using Generated Code from Older Release” on page 7-
43

7-38

Enhance Model Coverage of Older Release Models

4\ R2015b

1. Build model
] g
—

Design Model

Generaféa C code

4\%2201 8b
2. Import generated

code as SIL block
’ @—»w Ouur-—@

SiL
G —wm2 ouz f—»(2)

sldvCrossReleaseExample_15b_R2015b_sil

SIL Block

3. Generate test cases
for Embedded Coder
generated code

Tent G Expiration

5. Simulate 4. Generate
harness model harnhess model
and generate

coverage report

Madel Hierarchy/Complexity Test]
Dl 1

Exspple § 100% mmmm—s 100% w—

o - T sldvData file
Model coverage report

Enhance Model Coverage by Generating Test Cases for Older
Release Model

This example shows how to upgrade model coverage of a model created in R2015b. You
use test generation for supported S-functions available in the latest release.

The example model sldvexSFunctionHandlingExample contains the handwritten S-
Function, which implements a lookup table algorithm. The handwritten S-Function is in

7-39

matlab:sldvexSFunctionHandlingExample

7 Generating Test Cases

the file sldvexSFunctionHandlingSFcn.c. The user source code for the lookup table is in
the file sldvexSFunctionHandlingSource.c.

1 [n MATLAB R2015b, open the sldvexSFunctionHandlingExample model.

open_system('sldvexSFunctionHandlingExample');

Simulink Design Verifier
S-Function Handling for Test Generation

double
1)
double InterpolatedData
sldvexSFunctionHandlingSFen 1,0, 1
InputCata Jints int8 beoolzan
i SaturaticnDcoured
sMotZero

S-F unction

This model contains a handwritten S-Function which implements a lookup table algorithm. The S-Function
block returns the interpolated value at the first output port and returns the status of the interpolation atthe
second output port.

The second output port returns the value -1 if a lower saturation occurs, 1 if a upper saturation
occurs, and 0 otherwise.

Open 5
" Run View Options
S-Function sources
(double-click) (double-click) (double-click)
Open Source Files Run Simulink Design Verifier View Simulink Design Verifier Options

2 To simulate the model and generate the coverage report, in the Simulink Editor, click

the Run button. See “View Coverage Results in a Model” (Simulink Coverage).

After the simulation, the coverage report indicates that full coverage is not achieved
for sldvexSFunctionHandlingExample model.

7-40

matlab:sldvexSFunctionHandlingExample

Enhance Model Coverage of Older Release Models

Summary
Model Hierarchy/Complexity Testl
D1 Cl1 Execution
1. sldvexSFunctionHandlingExample § 13% = 0% —— 100% e—
2 .. =NotFero MNA 0% — 100% ——

3 In MATLAB R2018b, open the sldvexSFunctionHandlingExample model. The example
model sldvexSFunctionHandlingExample is available in R2015b and R2018b, so
you can use the same model for test generation workflow.

open_system('sldvexSFunctionHandlingExample');

To avoid any potential changes in the model, create a copy of the older release model
in the current working folder, and then open the model in R2018b. To upgrade and
improve models that you use in the current release, you can use the
upgradeadvisor.

4 Compile the S-function to be compatible with Simulink Design Verifier for test case
generation by using slcovmex. For more information, see “Configuring S-Function
for Test Case Generation” on page 7-114.

slcovmex('-sldv', ...

'-output', 'sldvexSFunctionHandlingSFcn',...

['-1', fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', ‘'src')], ...
fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src',...
'sldvexSFunctionHandlingSource.c'), ...

fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src',...

'sldvexSFunctionHandlingSFcn.c'));

5 Create an opts option for the sldvexSFunctionHandlingExample model.

opts = sldvoptions;

opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'Condition’;
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';

opts.SFcnSupport = 'on';

6 To generate test cases by using the specified opts options, use sldvrun to analyze
the model.

[status, fileNames] = sldvrun('sldvexSFunctionHandlingExample', opts);

7-41

matlab:sldvexSFunctionHandlingExample

7 Generating Test Cases

7-42

9

After analysis, the software generates a Simulink Design Verifier data file and stores
it in the default location <current folder>\sldv output
\sldvexSFunctionHandlingExample sldvdata.mat

In R2015b, open the model.

open_system('sldvexSFunctionHandlingExample');
Load the sldvData file created in R2018b.

a On the Design Verifier tab, click Load Earlier Results and browse to the
sldvData MAT-file generated in R2018b.

b Click Open.

Pk Simulink Design Verifier Results Summary: sldvexSFunctionHan... X

Test generation completed normally. -
13/13 objectives are satisfied.

Results:

Highlight analysis results on model

* View tests in Simulation Data Inspector
s Generate detailed analysis report

* Create harness model

* Export test cases to Simulink Test

... o

Data saved in: sldvexSFunctionHandlingExample sldvdata.mat
in folder: H:\Documents\MATLAR\test\sldv output
\sldvexSFunctionHandlingExample o

In the Simulink Design Verifier Results Summary window, click Simulate tests and
produce a model coverage report. The report indicates that 100% coverage is
achieved for sldvexSFunctionHandlingExample model.

Enhance Model Coverage of Older Release Models

Summary

Model Hierarchy/Complexity Testl
D1 Cl Test Objective Execution

1. sldvexSFunctionHandlingExample § 100% s 100% Sesss 100% s 100%

2. sNotZero NA 100% = NA 100% ———

For more information, see “Simulink Design Verifier Data Files” on page 13-10 and
“Simulate Tests and Produce Model Coverage Report” on page 1-23.

Enhance Model Coverage by Using Generated Code from Older
Release

This example shows how to upgrade the model coverage of a model created in R2015b by
using code generation workflow.

For this workflow, you must have Simulink Coder™ and Embedded Coder.

The example model sldvCrossReleaseExample contains the handwritten S-Function,
which implements a relational boundary algorithm. The handwritten S-Function is in the
file rel sfcn.c. The user source code is in the file rel comp.c.

To inline the S-function, use the rel sfcn.tlc file. For more information, see “Inline S-
Functions with TLC” (Embedded Coder).

1 Copy the example model sldvCrossReleaseExample and S-Function files, rel sfcn.c,
rel comp.c, and rel sfen.tlc in the current working folder. Copy the header files
rel comp.h into the current working folder. You use the example model and
supporting files in R2015b for a “Cross-Release Code Integration” (Embedded Coder)
workflow.

Note The example model sldvCrossReleaseExample is created in R2018b for
example purpose. To perform code generation workflow by using the example model,
export sldvCrossReleaseExample model to 15b. Save the model as
sldvCrossReleaseExample 15b in the current working folder. For more
information, see “Export a Model to a Previous Simulink Version” (Simulink).

7-43

7 Generating Test Cases

2 In MATLAB R2015b, open sldvCrossReleaseExample 15b model from the current
working folder.

open_system('sldvCrossReleaseExample 15b');

Simulink Design Verifier
Enhance Model Coverage by Using Code Generation Workflow

mt outtt —e (1)
2 ouzf—e(2)

The Subsystem block contains a handwritten S-Function which implements a
relational boundary algorithm. The S-function block returns an output value in
100-200 range.

3 Compile the S-function by using the function legacy code.

def = legacy code('initialize');
def.SFunctionName = 'rel sfcn';
def.OutputFcnSpec = 'uint8 yl = relational bound(uint8 ul)"';
def.HeaderFiles = {'rel comp.h'
def.SourceFiles = {'rel comp.c'
def.IncPaths = {pwd};
def.SrcPaths = {pwd};
def.Options.supportCoverageAndDesignVerifier = true;
legacy code('sfcn cmex generate', def);
legacy code('compile', def);

+;
+

4 To simulate the model and generate the coverage report, in the Simulink Editor, click
the Run button. See “View Coverage Results in a Model” (Simulink Coverage).

After the simulation, the coverage report indicates that 50% coverage is achieved for
sldvCrossReleaseExample 15b model.

7-44

Enhance Model Coverage of Older Release Models

Summary
Model Hierarchy/Complexity Testl
D1 Execution
1. sldvCrossPeleaseExample 13b 6 30% o 100% =—
2. ... Bubsvstem 5 530% o 100% —

To generate code using Embedded Coder, from the Apps tab, select Embedded
Coder. For more information, see “Generate Code Using Embedded Coder®”
(Embedded Coder).

In the C Code tab, click Generate Code.

The model is preconfigured with these code generation settings.

set param(sldvCrossReleaseExample 15b, 'SystemTargetFile', 'ert.tlc');
set param(sldvCrossReleaseExample 15b, 'PortableWordSizes', 'on');

set param(sldvCrossReleaseExample 15b, 'SupportNonFinite', 'off");

set param(sldvCrossReleaseExample 15b, 'GenCodeOnly', 'on');

set param(sldvCrossReleaseExample 15b, 'SolverMode', 'SingleTasking');
set param(sldvCrossReleaseExample 15b, 'ProdEqTarget','on');

The software generates C code for the model and saves the files in the default folder
location <current _folder>\sldvCrossReleaseExample 15b ert rtw.

Save the configuration set of the model sldvCrossReleaseExample 15b to a MAT
file. This ConfigSet is used in R2018D, to set the configuration set of the model in
R2018b.

config set = getActiveConfigSet('sldvCrossReleaseExample 15b"');

copiedConfig = config set.copy;
save('copiedConfig.mat', 'copiedConfig');

In MATLAB R2018b, import the components exported from R2015b.
a Before you import components in current release, rename or delete rtwtypes.h

file available in the folder <current folder>
\sldvCrossReleaseExample 15b ert rtw. During cross-release import,

7-45

7 Generating Test Cases

7-46

10

11

12

MATLAB tries to regenerate a file with same name. If you do not delete or
rename the file rtwtypes.h, MATLAB displays an error.

b Import the generated component code from R2015b as software-in-the-loop (SIL)
block.

crossReleaseImport('sldvCrossReleaseExample 15b ert rtw',...
'sldvCrossReleaseExample 15b', 'SimulationMode','SIL');

The crossReleaseImport function creates an untitled model that contains
software-in-the-loop (SIL) block
sldvCrossReleaseExample 15b R2015b sil.

Add Inport and Outport ports to the
sldvCrossReleaseExample 15b R2015b sil block and save the model as
sldvCrossReleaseExample sil 18b.

In outt ——»(1)

SIL

In2 outz ——»{_ 2)

sldvCrossReleaseExample_15b_R2015b_sil

(]

Apply the model configuration set similar to R2015b model.

load('copiedConfig.mat');
attachConfigSet('sldvCrossReleaseExample sil 18b', copiedConfig, true);
setActiveConfigSet('sldvCrossReleaseExample sil 18b', copiedConfig.Name);

Set the simulation mode to Software-in-the-Loop (SIL). To simulate the model,
in the Simulink Editor, click the Run button.

To generate test cases for Embedded Coder generated code, on the Design Verifier
tab, select Target > Code Generated as Top Model and click Generate Tests. For
more information, see “Generate Test Cases for Embedded Coder Generated Code”
on page 7-32.

After Simulink Design Verifier analysis, the software generates the test cases and
saves the sldvData in folder at default location <current folder>\sldv_output
\sldvCrossReleaseExample sil 18b.

In R2015b, open the model.

open_system('sldvCrossReleaseExample 15b"');

Enhance Model Coverage of Older Release Models

13

14

Update the sldvData.ModelInfomation.Name field in sldvData same as the
model name in older release. For example, sldvCrossReleaseExample 15b.s1x.

Create a harness model by using the sldvData created in R2018b. This data consists
of test cases generated from Embedded Coder generated code. In the dataFile,
type the location of the sldvData generated for
sldvCrossReleaseExample sil 18b model.

sldvmakeharness('sldvCrossReleaseExample 15b.slx', 'dataFile")

7-47

7 Generating Test Cases

Size-Type
Test Case 1 o | §idvCross RelesseExmmple_ 155, _._
| Ot
| n2f— In2 ouzb— w2)
Out2
Inputs Test Unit
e
DoC
Temet
Test Case Explanation
[Signal Builder (sldvCrossReleaseExample_13b_harness/Inputs) - O >
File Edit Group Signal Axes Help N
T H| PR oo | — I SFRGEE oo | g]| [
Active Group: | Test Case 1 v | D] = |
50
In1
494 0
45 | i i i i i i i |]
47 r
In2
46
45 | i i i i i i i | i
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02
Time (sec)
A
¥ In2
Name: In1
Index: 1 W
W
Click to select, Shift+click to add In1 (#1) [¥ Min ¥Max]
15 all

To simulate the model by using all the test cases, click the Run all button]

7-48

See Also

The software simulates all the test cases and generates a coverage report. The report
indicates that 100% coverage is achieved for sldvCrossReleaseExample 15b
model.

Summary

Model Hierarchy/Complexity Testl
D1 Execution

1. sldvCrozsBeleaseExample 130 6 100% o (00% S

2. ... Bubavstem 5100% o 100% S

See Also

More About

“Generate Test Cases for Embedded Coder Generated Code” on page 7-32
“Cross-Release Code Integration” (Embedded Coder)

“Simulink Design Verifier Data Files” on page 13-10

“Simulink Design Verifier Harness Models” on page 13-18

7-49

7 Generating Test Cases

Enhanced MCDC Coverage in Simulink Design Verifier

7-50

Enhanced Modified Condition Decision Coverage (MCDC) is an extension of modified
condition decision coverage. For a test block, enhanced MCDC generates test cases that
avoid masking effects from downstream blocks, so that the test block has an effect on the
output.

To detect the effect of a test block by using the enhanced MCDC coverage objective, you
can consider a standard model coverage objective of a test block or you can author your
own custom test objectives for analysis. For more information, see:

* Use Model Coverage Objectives for Enhanced MCDC Coverage on page 7-50

* Author Custom Test Objectives for Enhanced MCDC Coverage on page 7-51

To generate test cases by using enhanced MCDC model coverage objectives, and then
analyzing the results, see Basic Workflow for Enhanced MCDC Analysis on page 7-57.

Use Model Coverage Objectives for Enhanced MCDC Coverage

For a given test block, you can detect the effect on a model coverage objective from the
downstream blocks. When you generate test cases by using enhanced MCDC model
coverage objectives, the generated test cases avoid the masking effect from the
downstream blocks. The model coverage objective is detectable at a detection site.

Consider this model that consists of a cascade of Switch, Min, and Max blocks.

A
| 5=

2) [>=0 ‘

B min 5

CO— max Loy
ao— 5 7
D
c Mininp (?E_. Out1

Switch Maxinp

The test cases generated for enhanced MCDC coverage ensure that the decision objective
of the “Switch” (Simulink Coverage) test block is not masked by the downstream Min and
Max blocks. The generated test cases ensure that these nonmasking conditions for Min
and Max blocks are satisfied:

1 F <D, ensures that the Min block does not mask the Switch output.

Enhanced MCDC Coverage in Simulink Design Verifier

2 G > E, ensures that the Max block does not mask the Min output.

The decision objective of the Switch block and the nonmasking conditions of the Min and
Max blocks are satisfied along the path and are detected at the detection site (Qutl). For
example, the path starts from the output signal of the Switch block, propagates along
the Min block, and ends at the output signal of the Max block (highlighted in the example
model).

Enhanced MCDC criteria ensure better quality test cases because the test case detects
the effect of a model coverage objective of the test block at the detection site. To analyze
a model for enhanced MCDC analysis, see example Analyze a Model for Enhanced MCDC
analysis on page 7-53.

Author Custom Test Objectives for Enhanced MCDC Coverage

Enhanced MCDC considers the default coverage objectives of a test block that are
detectable at the detection site. To check the detectability status of a custom test
objective, you can author the test objective of a model object, and then perform enhanced
MCDC analysis.

Consider this model that consists of a Product block and a Min block. The Product block
does not have a coverage objective.

In1

K

| mi >
Producti Outl
i 1

T

You can author a custom test objective for the Product block to render the output value
less than 0 and detect the effect of the custom test objective at a detection site.

For more information, see Author Custom Test Objective Workflow on page 7-61.

7-51

7 Generating Test Cases

See Also

More About

. “Model Coverage Objectives for Test Generation” on page 7-35
. “Design Verifier Pane: Test Generation” on page 15-37

7-52

Analyze a Model for Enhanced MCDC Analysis

Analyze a Model for Enhanced MCDC Analysis

This example shows how to generate test cases for enhanced Modified Condition Decision
Coverage (MCDC) objectives. You generate test cases for enhanced MCDC coverage
objectives and review analysis results. The sldvEnhancedMCDCExample model consists
of Switch, Min, and Max blocks.

1 Open the model sldvEnhancedMCDCExample.

—»H\
A
@ | >=o

B | F min p »
— »
ao— 4 | o mex (1)
C Mininp = Out1
. E
Switch Maxinp

2 To configure the model for Enhanced MCDC objectives, in the Configuration
Parameters dialog box, on theDesign Verifier > Test generation pane, set Model
coverage objectives to Enhanced MCDC. Click OK.

3 To generate test cases, on the Design Verifier tab, click Generate Tests.

After the analysis is completed, the Results Summary window displays the processed
objectives and options to review the results.

4 To highlight the analysis results, click Highlight analysis results on model.

To analyze whether the model coverage objectives of the Switch test block are
detectable, click the Switch block.

7-53

7 Generating Test Cases

J"ﬁ-’e:—. ts: sldvEnhancedMCDCExample — O

Back to summary
sldvEnhancedMCDCExample/Switch

Decision Objectives
trigger == threshold false (output is Satisfied | Detectable | - View test case
from 3rd input port)
trigger == threshold true (output is Satisfied | Detectable | - View test case
from 1st input port)

The results show that the decision objectives of the Switch block are detectable.

5 Click View test case. The harness model opens and the Signal Builder block displays
Test case 4.

y a -
I
. -

128~

127

<127 -

-128

-120 | | | | | | | | |
(i} 002 0.04 0.06 0.08 o1 012 014 016 018 0z

Time (sec)

You can also view the test cases from the detailed analysis report.

7-54

Analyze a Model for Enhanced MCDC Analysis

Time|0
Step |1
A 0
B -128
C -1

D 127
E -128

Test Block
trigger >= threshold false (output is from 3rd input port)

Detection

0 O— 4 Site
L -l
128 A{ =0\ > 1
B min - 1
CGO— max
1 Go—
! — o_° Mininp i Outt
Switch 127 E o

The test case inputs A, B, and Cresultin F = -1and G = -1. The value of E =
-128 resultsin H = -1, so the impact of the test objective is detected at the
detection site Outl. The impact of the model coverage objective of the test block is
not masked along the path and is detectable at Qut1l.

6 To view the detailed analysis report, click HTML in the Results Summary. The Test
Objectives Status section lists the satisfied objectives. The coverage objective that is
detectable at the detection site is summarized in the table.

7-35

7 Generating Test Cases

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

Type)Iodelléem Description Detection Status é::}lysm Time Test Case
1 Decision Switch E‘;gﬁ;r == threshold false (output is from 3rd input Detectable 32 n
2 Decision Swntch trigger == threshold true (output is from 1st input port) [Detectable 33 3
3 Decision Minlnp Logic to determine output input 1 is the minimum Detectable 31 2
4 Decision MinInp Logic to determine output input 2 is the minimum Detectable 32 3
5 Decision MaxInp Logic to determine output input 1 is the maximum Detectable 31 2
6 Decision MaxInp Logic to determine output input 2 is the maximum Detectable 2 1

7-56

The Objectives field in the Simulink Design Verifier data files lists the detectability
status and the detection sites for the model coverage objectives. Fore more

information, see “Simulink Design Verifier Data Files” on page 13-10.

See Also

More About
“Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50

Basic Workflow for Enhanced MCDC Analysis

Basic Workflow for Enhanced MCDC Analysis

To generate test cases for enhanced Modified Condition Decision Coverage (MCDC)

coverage objectives:

1 On the Design Verifier tab, in the Mode section, select Test Generation.
Click Test Generation Settings.

3 In the Configuration Parameters dialog box, on the Design Verifier > Test
Generation pane, set Model coverage objectives to Enhanced MCDC. Click OK.

4 Click Generate Tests.

Note Enhanced MCDC analysis is not supported when you “Generate Test Cases for
Embedded Coder Generated Code” on page 7-32. The software considers MCDC coverage
objectives for test generation analysis.

Simulink Design Verifier analyzes the model for Enhanced MCDC coverage objectives.
After the analysis is complete:

* The software highlights the model with the analysis results.

* The Results Inspector window displays the summary of the model coverage objectives
including the detectability status.

iIc

Back to summary
sldvEnhancedMCDCExample/ Switch

Decision Objectives

trigger == threshold false (output is Satisfied | Detectable | - View test case
from 3rd input port)

trigger == threshold true (output is Satisfied | Detectable | - View test case
from 1st input port)

7-357

7 Generating Test Cases

7-58

The Results Inspector window displays these detectability statuses for a model

coverage objective:

¢ Detectable
* Not Detectable
¢ Undecided

The table lists the possible combinations of the objective status and the detectability

statuses.

Objective Status

Detectability Status

Test Case Description

Satisfied

Detectable

The test case satisfies the
model coverage objective
and is detectable at the
detection site.

Satisfied - Needs
Simulation

Detectable

The test case satisfies the
model coverage objective
and is detectable at the
detection site.

To confirm the satisfied
status, you must run
additional simulations of
test cases. For more
information, see
“Objectives Satisfied -
Needs Simulation” on
page 13-52.

Satisfied

Not detectable

The test case satisfies the
model coverage objective.
However, the test
objective is not detectable
at any detection site.

Basic Workflow for Enhanced MCDC Analysis

Objective Status Detectability Status Test Case Description

Satisfied Undecided The test case satisfies the
model coverage objective.
The software is unable to
show the effect of model
coverage objective on the
downstream blocks.

Unsatisfiable Not Detectable The test objective is
unsatisfiable and not
detectable at any
detection site.

Undecided Undecided The test objective is
undecided and the
software is unable to show
its effect on the
downstream blocks.

* The Simulink Design Verifier data file stores the detectability status and detection site
for model coverage objectives. For more information see, “Simulink Design Verifier
Data Files” on page 13-10.

Configure Advanced Options for Enhanced MCDC Analysis

To analyze a model with stricter nonmasking conditions, enable the “Use strict
propagation conditions” on page 15-46 option. This option is available in the
Configuration Parameters dialog box, on the Design Verifier > Test Generation pane, in
Advanced parameters.

The software evaluates stricter nonmasking conditions to analyze the effect on the test
block from the downstream blocks. For example:

* If your model consists of Atomic Subsystem with the Function packaging (Simulink)
option set to Auto or Inline.

Consider a model that consists of Switch and Atomic Subsystem blocks. The Function
packaging (Simulink) option is set to Auto and you enable the “Use strict propagation
conditions” on page 15-46 option. The effect of the Switch test block is detectable at
the detection point Out1l.

7-59

7 Generating Test Cases

A
@O ol
B
Gr— g i e S
C v} Out1
Switch G
E
~ Atomic Subsystem = T
—
— T
- T
F min G >
max | »(7)
e G r—
Minlnp H
Maxinp

When you analyze the model with the “Use strict propagation conditions” on page 15-
46 option set to O f, the software analyzes the model until the effect of the Switch
test block reaches the Atomic Subsystem. The Atomic Subsystem is the detection
point.

» If your model consists of blocks such as Gain or Product with the Saturate on integer
overflow option set to On.

See Also

More About
. “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50

7-60

Author Custom Test Objective Workflow

Author Custom Test Objective Workflow

Enhanced Modified Condition Decision Coverage (MCDC) considers the default coverage
objectives of a test block that are detectable at the detection site. To check the
detectability status of a custom test objective, you can author the test objective of a model
object, and then perform Enhanced MCDC analysis.

Consider this model that consists of a Product block and a Min block. You can author a
custom test objective for the Product block to render the output value less than 0 and
detect the effect of the custom test objective at a detection site.

In1
X p—

y|min >0
Product1 Outl
Min|

In2

D,

In3

Steps for Authoring Custom Test Objectives
This workflow describes the steps for authoring custom test objectives for a block.

Step 1: Create a library of atomic masked subsystem to author the custom test
objectives. The masked subsystem consists of these blocks:

* Block under consideration, for example, a Product block.
* Logic to encode the custom test objective, for example, a MATLAB Function block.
» Simulink Design Verifier Test Objective blocks.

7-61

7 Generating Test Cases

7-62

Yin1 Masked ot b
bsystem@ut!
> su
v
1) >
In1 Block under
4 . —»(1
consideration D
(2) > Out1
In2

Test
Objective
Block

Logic to 1

encode =
custom test | ®
L, objectives

A4

Step 2: In the masked subsystem:

* Add isEnabledForDetectability parameter and set the parameter to On.
* Add the detectBlock parameter with the name of the block under consideration.
* Set the Evaluate attribute of the detectBlock parameter to Off.

Step 3: Define the block replacement rule to replace the block under consideration with a
masked subsystem.

To author custom test objectives, use blkrep rule product customTestObjective block
replacement rule example file. In the block replacement file, you update the
rule.BlockType and rule.ReplacementPath based on your model blocks. For more
information, see “Block Replacements for Unsupported Blocks” on page 4-9.

Step 4: Configure your model with the block replacement rule. In the Configuration
Parameters dialog box, in Design Verifier > Block Replacements pane, enter the List
of block replacement rules.

Step 5: Select Enhanced MCDC for Model coverage objectives and perform test
generation analysis.

Author Custom Test Objective Workflow

Analyze Custom Test Objectives in a Model for Enhanced
MCDC

This example shows how to author custom test objectives for the Product block in the
sldvCustomTestObjectiveExample model. Then, it shows how you can detect the
effect of the test objective at a detection site.

1 Open the sldvCustomTestObjectiveExample model.

addpath(fullfile(docroot, 'toolbox', 'sldv', 'examples'));
open_system('sldvCustomTestObjectiveExample');

In1

Ko
;| min >
Producti Outl
Min 1

In?

D,

In3

Library of atomic masked subsystem: The
blkReplacementlib_customTestObjective library consists of the custProduct masked
subsystem. The logic to encode the custom test objective is defined in the MATLAB
Function block. The getCustomTestObjectives MATLAB Function block consists
of two custom conditions for the Test Objective blocks.

7-63

7 Generating Test Cases

Out1 P

FEE 3
/ — \

h
i Aj—kzi»
o
— Product_target e
in1 customTest1 I
in2
- getCustomTestObjeatiemTest2 —| true
getCustomTestObjectives @

The custProduct masked subsystem is preconfigured with these parameters. For
more information, see “Mask Editor Overview” (Simulink).

7-64

Author Custom Test Objective Workflow

2 Mask Editor: custProduct

lcon 8 Ports Parameters & Dialog |nitialization Docurnentation

Controls ~

= Parameter

Edit

@ Check box
Popup
Combo box
& Listbox

@ Radic butten
Ul Slider

4 Dial

[E Spinbox

E unit

[E1] Text Area

D Custom Table
& Tree

[;T;] DataTypeStr
Min

Max

aﬂ Promote

=l Container
=1 Group box
[3 Tab

E Table
1 CollapsiblePane

Unmask

Dialog box

Type Prompt Name
Yo« MaskType> DescGroupVar
%o=MaskDescription> DescTextVar
Parameters ParameterGroup‘u‘a_r

isEnabledForDetectability

Drag or Click items in left palette to add to dialog.
Use Delete key to remove items from dialeg.
Tutorial:- Creating a Mask: Parameters and Dialog Pane

Censtraint Manager

Property editor
B Properties

Mame

detectBlock

| Value

Product_target |

Prompt
Type
B Attributes

edit

| Evaluate

Tunable
Read only
Hidden
Mever save
Constraint

E Dialog
Enable
Visible
Callback
Tooltip

2 Layout
ltem location
Prompt location
Horizontal Stretch

Cancel

on

ooo 4

Mone

O

Help Apply

Block replacement rule to replace the block under consideration with a
masked subsystem: The sldvCustomTestObjectiveExample model is

preconfigured with the block replacement options. The block replacement rule is

defined in the blkrep rule product customTestObjective file that replaces the Product
block with the custProduct masked subsystem.

7-65

7 Generating Test Cases

&4 Configuration Parameters: sldvCustomTestObjectiveExample/Configuration (Active) - O X
Q
Salver Block Replacements
Data Import/Export
Math and Data Types Apply block replacements
» Diagnostics List of block replacement rules (in order of priority):
Hardware Implementation blkrep_rule_product_customTestObjective

Maodel Referencing
Simulation Target
Code Generation

r v

Coverage

HDL Code Generation

¥ Design Verifier

Block Replacements File path of the output medel: |$ModelName$_replacement

L4

Output model

Parameters

Test Generation
Design Error Detection
Property Proving
Results

Report

OK Cancel Help Apply

2 To configure the model for enhanced MCDC objectives, on the Design Verifier tab,
click Test Generation Settings. In the Configuration Parameters dialog box, in
Design Verifier > Test Generation pane, for Model coverage objectives, select
Enhanced MCDC. Click OK.

3 To generate test cases, click Generate Tests.

The software analyzes the replacement model for test generation.

7-66

Author Custom Test Objective Workflow

4

Simulink Design Verifier Results Summary: sldvCustomTestObjecti

m
]
]

m

T
T

m

]

Progress

Objectives processed 2/4
Satisfied 1
Unsatisfiable 0
Elapsed time 0:10

10-Jan-2019 14:17:16
Preprocessing model...done

'sldvCustomTestObjectiveExample_replacement’
mpiling model...done
Building model representation...done

10-Jan-2019 14:18:00

with Simulink Design Verifier.

Product/Test Objective
Objective: T
Analysis Time = 00:00:09

SATISFIED
Min

'sldvCustomTestObjectiveExample_replacement’ is compatible for test generation

Generating tests using model representation from 10-Jan-2019 14:18:00...

Disable Highlighting Stop

Click Highlight analysis results on model.

To analyze the detectability of the Product block, click the Product block.

7-67

7 Generating Test Cases

*a

Back to summary

Objective: T
Objective: T

Test objective Objectives

sldvCustomTestObjectiveExample/Product

Detectable | - View test case
Detectable | - View test case

The results show that the test objectives of the Product block are detectable. The test

case is generated.

Note The software is unable to confirm the objectives status through validation
results for the objectives introduced by block replacement. Therefore, the test
objective status is reported as satisfied - needs simulation. For more information on
validation, see “Reporting Approximations Through Validation Results” on page 2-26.

5 Click View test case. The harness model opens and the Signal Builder block displays

the test case.

6 To view the detailed analysis report, click HTML in the Results Summary. The Block
Replacement Summary provides details about the replaced blocks.

Block Replacements Summary

Table 2.1. Block Replacements

#:

Replacement Rule / Block Tvpe

Rule Description

Replaced Blocks

1

blkrep_rule_product_customTestOly
Product

blkrep rule product_customTestObj

Productl

7-68

The Test Objectives Status section lists the objectives. The test objective that is
detectable at the detection site is summarized in the table.

See Also

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives

. Detection Analysis Time
Type Model Item Description Status (sec) Test Case
3 Decision Min Lc.g{c to determine output input 1 is the Detectable 13 5
minimum
4 Decision MMin Lo_g{c to determine output input 2 is the Detectable 1 i
minimum
Objectives Satisfied - Needs Simulation
Simulink Design Verifier found test cases that exercise these test objectives. However. further simulation 1s needed to confirm the Satisfied status.
.. Detection Analysis Time
Type Model Item Description Status (sec) Test Case
Product/ Test Objective. Defined by block
1 Test objective |replacement rule Objective: T Detectable 12 4
‘bllerep_rule_product_customTestObjective’.
Product/ Test Objectivel Defined by block
2 Test objective |replacement rule Objective: T Detectable 14 3
'bllerep_rule_product_customTestObjective’

See Also

More About
“Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50

“Block Replacements for Unsupported Blocks” on page 4-9

7-69

7 Generating Test Cases

Flip Flop Test Generation

This example shows how to generate test cases that achieve complete model coverage for
a flip-flop.

Simulink Design Verifier
Flip Flop Test Generation

D203 3n
D D boodzan
De2Ze33n
(2} CLK a
boodaan
CLK
plicir 9 »(2)

: DeIedaan

ICLR

¥

r

Thiz example shows how to generate test cases that achieve complete model
coverage for a flip-flop. The outcome of each model coverage point in this example
model is a test objective. If vou configure Simulink Design Verifier to generate the

fewest test cases, it will satisfy as many objectives as possible in each test case.

Run View Options
(double-click) (double-click)

Copyright 2006-2012 The MathWorks, Inc.

7-70

Model Coverage Test Generation

Model Coverage Test Generation

This example shows how to generate test cases that achieve complete model coverage for
a debouncer.

Simulink Design Verifier
Model Coverage Test Generation

2 -
'\ e

debounced

raw

_I

debounce

This example shows how to generate test cases that achieve complete model
coverage for a debouncer. The outcome of each model coverage point in this
example model is a test objective. If you configure Simulink Design Verifier to
generate the fewest test cases, it will satisfy as many objectives as possible in

each test case.

Run View Options
(double-click) (double-click)

Caopyright 2006-2012 The MathWarks, Inc.

7-71

7 Generating Test Cases

Test Objective Block

This example shows the use of two custom Test Objective blocks.

Simulink Design Verifier

Test Objective Block

raw
debounce

N 2
v 4\ True
i »(D
debounced
g
= in

Masked Objective

This example shows the use of two custom Test Objective blocks. The block "True” forces the
output signal to be 2. The block "Edge" inside "Masked Objective” specifies that the oufput

signal transition from 2 to 1.

Run
(double-click)

View Options
{double-click)

Copyright 2006-2012 The MathWorks, Inc.

7-72

Test Condition Block

Test Condition Block

This example shows how to constrain input values by using Test Condition block.

Simulink Design Verifier
Test Condition Block

| 2
2 v 4\ True
1 ——(D)
] | debounced
debounce T
™ in
Masked Objective

This example shows how to constrain input values. The Test Condition block
forces the input value to be either 0 or 1.

Run View Options
(double-click) ({double-click)

Copyright 2006-2018 The MathWarks, Inc.

7-73

7 Generating Test Cases

Cruise Control Test Generation

This example shows how to generate test cases that achieve complete model coverage.

7-74

Cruise Control Test Generation

Simulink Design Verifier
Cruise Control Test Generation

L1 F # enable
enable
[2 } P brake throt = 1 }
brake throt
L3 F P st
set [0 100]
s) ——{ewees
speed Actual s
' >inc targetf—————» (2)
inc target
! ﬁ ; = dec
dec

Controller

This example shows how to generate test cases that achieve complete model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One of the test objectives forces the discrete integrator
in the Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500,
The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

Toggle Constraint

Copyright 2006-2012 The MathWarks, Inc.

7-75

7 Generating Test Cases

Fuel Rate Controller Test Generation

This example shows how to generate test cases that satisfy Decision, Condition, and
MCDC coverage.

7-76

Fuel Rate Controller Test Generation

Fuel Rate Controller Logic

This example is derived from the original Simulink fuel system modal.

A

throt
fail_state » 1)
apaadD} fail_state

0

g
2

0

angine speed
o W) -
EGD |_rmode 2
4 | prass fuel_miod
= ___ _) uel_mode

coniral logic

This example shows how to generate test cases that satisfy Decision, Condition, and MCDC
coverage.

Simulink Design Verifier automatically generates test data and proves properties of models.

It produces sequences of input values that satisfy a testing criteria or demonstrate a
counterexample of a proof. The configuration options associated with the model specify the
ocbjectives of the analysis. When you analyze the model, Simulink Design Verifier uses
exhaustive searching techniques to generate input data. When successful, it generates test data
and creates a new harness model containing a Signal Builder block with the data values that
satisfy the analysis objectives.

MOTE: The complexity of this model might prevent test generation from completing in the allotted
fime. You can stop test generation and generate partial results, or you can extend the time limit
by editing the Simulink Design Verifier options.

Copyright 2006-2017 The Math\Waorks, Inc.

7-77

7 Generating Test Cases

Extend an Existing Test Suite

7-78

This example shows how to use Simulink® Design Verifier™ to extend an existing test
suite to obtain missing model coverage.

You analyze an example model and generate test suite to achieve full coverage. Then,
modify the model such that test cases no longer achieve full coverage. Finally, you analyze
the modified model to obtain missing coverage by using Simulink® Design Verifier™.

Generate an Initial Test Suite

Analyze the sldvdemo cruise control model and generate a test suite that achieves
full model coverage. To analyze the model to generate test cases that provide model
coverage, use the sldvrun function. Set the design verification parameters with
sldvoptions.

open_system 'sldvdemo cruise control';

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'MCDC';

opts.SaveHarnessModel = 'off';

opts.SaveReport = 'off"';

[status, files] = sldvrun('sldvdemo cruise control', opts, true);

Extend an Existing Test Suite

Simulink Design Verifier
Cruise Control Test Generation

L1} * enable

enable

brake throt 1)

brake throt

D

set [0 100]

@7 —|speed

speed Actual speed

L4) inc target —Il-

inc target

D

dec

@
¥

¥

set

h 4

¥

dec

Controller

This example shows how to generate test cases that achieve complete model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One of the test objectives farces the discrete integrator
in the Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500.
The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

Togole Speed
Constraint
{double-click)

Fun
{double-click)

View Options
{double-click)

Run Simulink Design Verifier Toggle Constrmint View Simulin k Design Verifier Options

Copyright 2008-2012 The MathWorks, Inc.

7-79

7 Generating Test Cases

The test generation analysis result appears in the Simulink Design Verifier Results
Summary window.

close system('sldvdemo cruise control',0);

Verify Complete Coverage

The sldvruntest function simulates the model with the existing test suite. The cvhtml
function produces a coverage report that indicates the initial coverage of the
sldvdemo cruise control model.

open_system 'sldvdemo cruise control';

[outData, initialCov] = sldvruntest('sldvdemo cruise control', files.DataFile,
cvhtml('Initial coverage',initialCov);

close system('sldvdemo cruise control',0);

Summary

Model Hierarchy/Complexity Testl

Decision Condition MCDC Execution
1. sldvdemo_crmuise control & 100% s 100% o 100% (0% ——
2.... Controller T100% s 100% 007 — 0% ——
3o Pl Controller 4 100% —— 1A NA 100% =e——

7-80

Modify the Model

Load the modified sldvdemo cruise control mod model. The controller target speed
value is limited to 70, by using a Saturation block.

load_system 'sldvdemo cruise control mod';
load_system 'sldvdemo cruise control mod/Controller';

[1, t

Extend an Existing Test Suite

enable
D .
- Active Control
(2 }—»| NoT p| AND
brake
Determine if the
m control is active
| 1
Active last step | <
e
speed . [Target speed l r
" n
{3} *H -\\ '#'/_ i+ +—arror throt —h'
set - - throt
Saturation Pl Contreller
© IX
inc - Compute the
3 t t d
‘ X arget spee
(6) il
dec >
11 »(2)
B Z
previous target target

Measure the Coverage Achieved by the Existing Test Suite

The sldvruntest function simulates the modified sldvdemo cruise control mod
model with an existing test suite and inputs identical to sldvdemo cruise control
model. The cvhtml function produces a coverage report that indicates the modified
sldvdemo_cruise control_mod model no longer achieves full coverage.

[outData, startCov] = sldvruntest('sldvdemo cruise control mod', files.DataFile, [],
cvhtml('Coverage with the original testsuite',startCov);

7-81

7 Generating Test Cases

Summary

Model Hierarchy/Complexity Testl

Decision Condition MCDC

Execution
1. sldvdemo cruise control mod 10 22% —

10029 s 100% S 00% ——
2 .. Controller O 2% e 100% s 10029 o 00% e—

I PI Controller 4 67% m— NA MNA 100% ——

Extend an Existing Test Suite

To achieve full model coverage, the sldvgencov function analyzes the model and extends
the existing test suite.

[status, covData, files] = sldvgencov('sldvdemo cruise control mod', opts, true, stal

7-82

Extend an Existing Test Suite

Simulink Design Verifier
Cruise Control Test Generation

L1) = enable
enable
L2 3} b brake throt 1)
brake throt
3 | set
set [0 100]
(Eﬁ ——e{speed
speed ctual speed
L4 3} #inc target —Il-
inc targ et
L5 } (dec
dec

Controller

Demo is modified from sldvdemo_cruise_control. '

Copyright 2008-2010 The MathWerdks, Inc

Verify Complete Coverage

Verify that the new test suite achieves full coverage for the

sldvdemo cruise control mod modified model. The sldvruntest function
simulates the modified model with the extended test suite. The cvhtml report shows the
total coverage achieved by the sldvdemo cruise control mod model.

[additionalOut, additionalCov] = sldvruntest('sldvdemo cruise control mod', files.Da:

totalCov = startCov + additionalCov;
cvhtml('With additional coverage',totalCov);

7-83

7 Generating Test Cases

Summary

Model Hierarchy/Complexity Testl

Decision Condition MCDC Execution

1. zldvdemo _cruize control mod 10 100% s 100% ——— 009 ————

100% —
2 ... Controller O 100% s 10029 000 — 00% —

L S Pl Controller 4 1009 — A NA

100% m—

At the end of this process, close the model.

close system('sldvdemo cruise control mod');

7-84

Defining and Extending Existing Tests Cases

Defining and Extending Existing Tests Cases

This example shows how Simulink® Design Verifier™ can extend test cases with
additional time steps to efficiently generate complete test suites.

The example starts with a model containing time-delay characteristics that make test
generation challenging. By creating a default test harness model and manually authoring
one test, the critical obstacle to efficient test generation is removed. Simulink Design
Verifier takes as input the logged values from the harness model and efficiently extends
this test to create a complete test suite.

Model Characteristics that Motivate Test Case Extension

The sldvdemo sbr extend design model includes the Stateflow® Chart SBR that
uses temporal logic so that very long test cases are required to make a transition from the
KEY OFF state to the KEY ON state. This type of time delay characteristic is common in
designs where a delay is used to reject spurious behavior or to wait for a physical system
or user to respond. In this design, satisfying the temporal logic in this transition is a
common obstacle to testing any of the states and transitions within the KEY ON state.

Fortunately, this type of time-delay characteristic is usually easy to identify and satisfy
with a manually authored test case.

open_system('sldvdemo sbr extend design');
sf('Open',sldvdemo ssid to sfid('sldvdemo sbr extend design/SBR',11));

7-85

7 Generating Test Cases

Simulink Design Verifier Seat Belt Reminder Extend Design Model

' ™
':! > KEY

(- A > s.eatﬂ.ertFasteD } SeatBeltlcon ——»(1)
t D SeatBeltlcon
Speed

L v
SBR

Inputs

r
[
¥

This model implements display logic for a seat belt reminder dashboard light. The reminder is active
when the ignition is on and seat belts are unfastened. The reminder ican flashes when vehicle speed
exceeds a calibratible threshaold.

Copyright 2008-2010 The MathWorks, Inc.

7-86

Defining and Extending Existing Tests Cases

KEY OFF KEY CRANK
SeatBettlcon=0; },_, SeatBeltlcon=1;

[after(500 tick)] . !i KEY == 0] [KEY==2] i i KEY ==1]
(KEY ON 5
/SB_UNFASTEN ™ I
LOW_SPEED A
SeatBeltlcon = 1; ~)
" [SeatBeltFasten == 1] l/
[Speed > SPEED _LIMIT] wv [Speed <=SPEED_LIMIT] !
- (SB_FASTEN ™
(HIGH_SPEED) en SeatBelticon=0
OFF
=t SeatBeltlcon=0;
. [SeatBeltFasten ==1]
[after(BLINK_TIME tick)] J [after(BLINK_TIME tick)] -
— y [SeatBeltFasten == 0]
{SeaTEIeItIcnnﬂ:]
S /) - v,
- J

Creating a Harness Model and Defining Starting Tests

The Simulink Design Verifier function sldvmakeharness creates a harness model with a

block that generates input values to the test model included by way of a model reference
block.

You can modify the test data in a harness model by manually editing the data values using
the Signal Builder user interface. You can also add more test cases by creating new signal
groups in the block. Alternatively, you can use the signalbuilder command to
programmatically accomplish the same thing.

In this example, you specify a test case that keeps the system in the KEY OFF state for 5
seconds:

[~, harnessModelFilePath] = sldvmakeharness('sldvdemo sbr extend design',[],[],true);
[~, harnessModel] = fileparts(harnessModelFilePath);

7-87

7 Generating Test Cases

startingTestTime = 0:0.5:5;
startingTestData cell(3, 1);
lengthStartingTest = length(startingTestTime);

startingTestData{l} = zeros(1l,lengthStartingTest);
startingTestData{2} = zeros(1l,lengthStartingTest);
startingTestData{3} = ones(1,lengthStartingTest);

signalBuilderBlock = sldvdemo signalbuilder block(harnessModel);
signalbuilder(signalBuilderBlock, 'Append’, ...

startingTestTime, startingTestData,...

{'Inputs.Speed', 'Inputs.SeatBeltFasten', 'Inputs.KEY'}, 'Starting Test Case');

signalbuilder(signalBuilderBlock, 'ActiveGroup', 2);
open_system(signalBuilderBlock);

Sie-Type

Starting Test Case I Gpeed » sidvdemo_shr_extend design
L~ Inputs.SestBehFasten Inputs SeatBelticon ————»(1)
L] Inouts. KEY SeatBelticon

Inputs Test Unit

e
DOC
Text

Test Case Explanation

7-88

Defining and Extending Existing Tests Cases

) signal Builder (sldvdemo_shr_extend_design_harness/Inputs) * - |EI|1|
File Edit Group Signal Axes Help k"
SH|$BRE| oo |~ TaEFRIE| > 0| 45
Active Group: IStar:t:i_ng Test Case j @, - =
1~
Inputs.Speed
0¢ & € & € o € s € & €
QL I 1 I 1 I I I i
Inputs. SeatBeltFasten
0
Y= I 1 I 1 I I I i
Inputs. KEY
1
0 I 1 I 1 I L I L I i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)
Left Point Right Point
Inputs.SezstBeltFasten (shown)
Name: [nputs. Speed T: | T | Tnputs KEY {shown)
Index: |1 'I ¥ | ¥ |
~|
Click to select, Shift+click to add Inputs. Speed (#1) [¥Min YMax]

Logging Starting Tests

In order to leverage the starting test case defined above, you use the sldvlogsignals
function to capture the input values in the necessary logged data format.

7-89

7 Generating Test Cases

7-90

The first input to sldvlogsignals is the path to a Model block, and the second input is
the index of signal group(s) within the harness model. When you invoke
sldvlogsignals, the parent model that contains the Model block is simulated.

The parent model is not restricted to Simulink Design Verifier harness models.
Alternatively, you might log data from a closed-loop simulation model that uses a Model
block to include the controller so that controller test cases more realistically reflect the
continuous time behavior expected in the closed-loop system.

[~, modelBlock] = find mdlrefs(harnessModel, false);
loggeddata = sldvlogsignals(modelBlock{1},2);

Extending Existing Tests during Test Generation

Before you can use existing test data during test generation, the data must be saved to a
MAT-file. You enable test case extension in the Test Generation pane of the Simulink
Design Verifier configuration parameters. Select Extend existing test cases, and specify
the MAT file in the Data file field.

Generated tests either extend one of the starting test cases with one or more new time
steps or will specify one or more time steps starting from the initial, or default,
configuration.

save('existingtestcase.mat', 'loggeddata');

opts = sldvoptions;

opts.ExtendExistingTests = 'on';
opts.ExistingTestFile = 'existingtestcase.mat';
opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off"';
[~, fileNames] = sldvrun('sldvdemo sbr extend design', opts, true);

Verifying Complete Coverage

The sldvruntest function verifies that the new test suite achieves complete model
coverage. The cvhtml function produces a coverage report that indicates 100% Decision
coverage is achieved with the generated test vectors.

[~, finalCov] = sldvruntest('sldvdemo sbr extend design', fileNames.DataFile,
cvhtml('Final Coverage', finalCov);

[1, true

Defining and Extending Existing Tests Cases

Coverage Report for sldvdemo sbr extend design

Table of Contents

1. Analvsis Information
2. Tests

3. Summary
4. Details

Analysis Information

Model Information

Model version 1.260
Author The MathWorks. Inc.
Last saved FriDec 23 06:27:41 2016

Simulation Optimization Options

Default parameter behavior wlined
Block reduction forced off
Conditional branch optimization on

Coverage Options

Analyzed model sldvdemo sbr_extend design
Logic block short circutting off
Tests
Test# Started execution Ended execution Description

Testl 10-Jan-2017 13:10:08 10-Jan-2017 13:10:08 Seat Belt Reminder Extend Design Model

Summary 7-91

Model Hierarchy/Complexity Testl

Tiartctman

7 Generating Test Cases

Clean Up

To complete the demo, close all models and remove the saved logged data file.
close system(harnessModel,0);

close system('sldvdemo sbr extend design');
delete('existingtestcase.mat');

7-92

Using Existing Coverage Data During Subsystem Analysis

Using Existing Coverage Data During Subsystem
Analysis

This example shows how Simulink® Design Verifier™ can target its analysis to a single
subsystem within a continuous-time closed-loop simulation and generate test cases for
missing coverage in that subsystem.

The example starts by measuring the coverage of a subsystem in a closed-loop simulation
model. Simulink Design Verifier finds new test cases that achieve the missing coverage of
the subsystem.

Measure Coverage of the Subsystem

The sldvdemo_autotrans model is a closed-loop simulation model. The subsystem
ShiftLogic is a Stateflow® chart and represents the controller part of this model. Test
cases designed in the Signal Builder block ManeuversGUI drive the closed-loop
simulation. You can use the cvtest and cvsim functions to measure the model coverage
achieved for this subsystem inside the closed-loop simulation model. In this example,
specifying the input to cvtest as a path to the subsystem rather than to the model name
results in measuring the coverage for the subsystem only. Also, the second input to cvsim
specifies the time interval to simulate the model and it is derived from the time range of
the current pane in the block ManeuversGUI.

The cvhtml function produces a report that indicates that 87% Decision, 67% Condition,
and 33% MCDC coverage is achieved by simulating the test case authored in the block
ManeuversGUT.

open_system('sldvdemo autotrans');
open_system('sldvdemo autotrans/ManeuversGUI');

test = cvtest('sldvdemo autotrans/ShiftLogic');
test.settings.decision = 1;
test.settings.condition = 1;

test.settings.mcdc = 1;

signalBuilderBlock = sldvdemo signalbuilder block('sldvdemo autotrans');
signalBuilderTime = signalbuilder(signalBuilderBlock);
simulationStopTime = signalBuilderTime{1l,1}(end);

existingCovData = cvsim(test, [0 simulationStopTime]);
cvhtml('Existing Coverage', existingCovData);

7-93

Generating Test Cases

Simulink Design Verifer
Modeling an Automatic Transmission Controller

ImprellerTorgue

(I

runi |

up_th

FPlotResults.

o Ti Throtile
M
s Throttle EngineRPM Engin=RPM
Engine e VehicleSpeead
Ti
B speed
Oy =17 =
0
Tout
down_th CALC_THOE--, Mout DutputTorque
ShiftLogic i
e i
i
h 4

tihnoitthe

Throttle

ThrasholdCalculation

VehicleSpead

7-94

Copyright 1920-2019 The Math\Warks, Inc.

Using Existing Coverage Data During Subsystem Analysis

=E & B

= [][=]

Edit Group Signal Axes Help o
v ooa | UL (B TR GRD ron w7

Active Group: | passing Manewver v|| [- e

Hame: |Throttle

100

5£_Throttle\I —
1
ﬁFBrake

_.1 i i i i i i i i i i

o 5 10 15 20 25 30 35 40 45 50
Time (sec)
E Throttle
B Brake
1 L
W
Click to select signal Thrattle (#1) [Min s]

Find Test Cases for Missing Coverage

To use existing coverage data during test generation, save existing coverage data to a .cvt
coverage data file. You can use existing coverage data by specifying the coverage data
path in the Coverage data file parameter and setting Ignore objectives satisfied in
existing coverage data parameter to on in the Test Generation pane of Simulink
Design Verifier configuration parameters.

In this example, the first input to sldvrun specifies the subsystem to analyze. Instructing
Simulink Design Verifier to analyze a subsystem is beneficial when the controller part of a
model needs to be tested separately or when you want to divide the analysis of a large
model into smaller, manageable parts.

As you can see in the report, Simulink Design Verifier only finds test cases for the
coverage objectives that are not covered in the existing coverage file. Notice that 4
coverage objectives in the subsystem ShiftLogic are proven to be unsatisfiable. This is

7-95

7 Generating Test Cases

expected because the logic inside the Stateflow chart ShiftlLogic uses temporal events
and since this chart updates at every sample time, usage of temporal conditions should be
satisfactory. Also note that, dead code within a subsystem will always be a dead code in
the model containing that subsystem.

To generate the harness model, Simulink Design Verifier extracts the contents of the
subsystem ShiftLogic into a Test Unit component fed by a Signal Builder block
containing the generated test cases.

cvsave('existingcov',existingCovData);

opts = sldvoptions;

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.SaveHarnessModel = 'on';

opts.SaveReport = 'on';

[status, fileNames] = sldvrun('sldvdemo autotrans/ShiftLogic',opts,true);
[~, harnessModel] = fileparts(fileNames.HarnessModel);
open_system(harnessModel) ;

Size-Type
Test Case 1
speed speed
T T] w1 | geal— (1)
—1__|) gear
down_thp—— Fowm_th
[v}
Inputs Test Unit (copied from ShiftLogic)
e
DoC
Text

7-96

Test Case Explanation

Using Existing Coverage Data During Subsystem Analysis

E'.’-l-_‘m:lIE'-lul-'I-el (slebvderna_autotrans/ManeuwversGUIY | (=] || [=] || £3 |
File Edit Group Signal Axes Help o
EHE S BRE| o oI ERCEE| o om 7
Active GIoup: | pazsing Maneuver v|| [- e
100
5£_Thrﬂttle i —
1
ﬂFBrak&
_.1 i i i i i i i i i i
0) 10 15 20 25 a0 35 40 45 50
Time (sec)
B Throttle
k1 Brake
Hame: Throftle
Index: |1 v
W
Click to select signal Thrattle (#1) [Min s]

7-97

7 Generating Test Cases

z Signal Buileder (ShiftLogic_harness/Inputs) E@

File Edit Group Signal Axes Help o
SH & 2B| oo |~ L[TRER| > 1 o= 2k E
Active Group: | |Test raze 1 ~ | | (g .| |
ab speed
(1] ?_o
2 I I I i i i T
2—up_th
1+
oF
I I I I I I I I
oF
down_th |
-2
4
& I I I I I I I
0 005 01 015
Hame: =speed
Index: 1 v
v
ok ‘Speed (#1) [¥Min ¥]
Clean Up

To complete the demo, close all models and remove the saved coverage data file.

close system('sldvdemo autotrans');
close system(fileNames.ExtractedModel,0);

7-98

Using Existing Coverage Data During Subsystem Analysis

close system(fileNames.HarnessModel,0);
delete('existingcov.cvt');

7-99

7 Generating Test Cases

Creating and Executing Test Cases

7-100

This example shows how to use Simulink® Design Verifier™ functions to log input
signals, create a harness model, generate test cases for missing coverage, merge harness
models, and execute test cases.

The example starts by logging input signals to the component that implements the
controller in its parent model and creating harness model for the controller from that
logged data. You use Simulink Design Verifier to find a new test case that achieves the
missing coverage. Then you merge the first harness model with the harness model
generated after the Simulink Design Verifier analysis. Finally, you capture all test cases
and execute the controller with those test cases in simulation mode and Software-In-the-
Loop (SIL) mode, and compare the results using CGV API.

Check Product Availability

This example requires a valid Stateflow® license. To demonstrate test execution in
Software-In-the-Loop (SIL) mode it also requires valid Simulink® Coder™ and Embedded
Coder™ licenses.

if ~license('test', 'Stateflow')
return;
end

canUseSIL = license('test','Real-Time Workshop') && ...
license('test', 'RTW Embedded Coder');

Logging Input Signals to the Component and Creating the Harness Model

The slvnvdemo powerwindow model contains a power window controller and a low-
order plant model. The component slvnvdemo powerwindow/

power window control system/control is a Model block that references the model
slvnvdemo powerwindow controller, which implements the controller with a
Stateflow® chart.

To create a harness model for the controller with the signals that simulate the controller
in the plant model, first log the input signals and then invoke harness generation with
that logged data.

open_system('slvnvdemo powerwindow');
load system('slvnvdemo powerwindow controller');

Creating and Executing Test Cases

loggedSignalsPlant =
sldvlogsignals('slvnvdemo powerwindow/power window control system/control');

harnessModelFilePath =

sldvmakeharness('slvnvdemo powerwindow controller',loggedSignalsPlant);
[~,harnessModel] = fileparts(harnessModelFilePath);

Simulink Verification and Validation
Power Window Controller Hybrid System Model

\—D position

neutral ———— driver_neutral

up
—I—l- driver_up

Daown
down
Driver Down
driv er_switch driver_down o[]

Driver Up = Up move_up — up

position »
position
Passenger Up —#|Up neutral L passenger_neutral
up
move_down —# down
J—b Daown T passenger_up
Passenger Down

passenger_switch
passenger_down

Copyright 1990-2010 The MathWorks, Inc.

7-101

7 Generating Test Cases

reset] i rese "
posttion 4—— 1)
reset
I obstacle pasition
. move_up 4
(2)——* neutral BN .
driver_neutral detect_obstacle_endstop
up
i neutral_up_down
drw er_u T P I'endstnp sivnvdemo_powerwindow_controller b |
__ driver_down — movelp »(1)
resef] reset L |—> obstacle move_up
driv er_rese bl
validate_driver |—> driver
— maoveDown
—> passenger move_down
(B)——*neutral s ’ 'S 4 |
passenger_neutral contraol
up
passenger_up neutral_up_down—
down
passenger_down
passenger_reset
validate_passenger
Size-Type
Test Case 1 - “ﬂ
slvnwdemo_powerwindow_contr
endstop ’ endstop
obstacke f————
. movellpp——
driver{ljfp— bstade movelp
/\ driver{Zjp—— =
driver3 b— maov el own
passenger(l) b—» Los
passenger(l) b— movelown
passengerl b— = passenger
Inputs Test L nit
[
ooC
Text

Test Case Explanation

7-102

Creating and Executing Test Cases

) Signal Builder (slvnvdemo_powerwindow_controller_harness/Inputs) - | Ellﬂ

File Edit Group Signal

Axes Help

FH| b BRE| o o — .0k

w1y T
o 19 ia [

Active Group: Fest Case 1

L
o
E
[|

1F -
0.5 endstop I
?JL L ﬂ' ‘ . ‘ £} 1 I [| |
0 |__ohstacle,
_1 | | 1 | | | | |
05 driver(1)
(1) = | | | L | |
1=
0.5 driver(2)
0 j
1 =
0.5k
0 ! : | | ! ' !
1
0.5 passenger(1)
q = | i 4]] I I]]
0 —passenger(2)
_1 | | 1 | | | | |
05| Passenger(3)
ﬂ { 1 | } } 4 L i }
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
Left Point Right Point
cbkstacle
Name: I&ndstl:lp 7 | q |
Index: |1 v| Y | Y |

Click to select, Shift+click to add

Iendstup (#1) [Min ¥ Max]

Measuring the Coverage with Logged Signals

Use the cvtest and cvsim functions to measure the model coverage achieved for the
controller model slvnvdemo powerwindow controller with the logged signals that
are captured in the harness model.

7-103

7 Generating Test Cases

The cvhtml function produces a report that indicates that 40% Decision, 35% Condition,

and 10% MCDC coverage is achieved by simulating the test cases captured from the
closed-loop model.

test = cvtest(harnessModel);
test.modelRefSettings.enable = 'On';
test.modelRefSettings.excludeTopModel = 1;

covDataFromLoggedSignals = cvsim(test);
cvhtml('Coverage with Logged Test Cases',covDataFromLoggedSignals);

7-104

Creating and Executing Test Cases

@ Web Browser - slvnvdemo_powerwindow_controller Coverage Report l = | [=] ﬁ]
| slvnvderno_powerwindow_controller Coverage Report | + | H 1 E@ "
@ o) | s | M| Location: Coverage¥20with%20Logged 320 Test %20 Cases. htrml -

Coverage Report for
slvnvdemo powerwindow controller

Table of Contents

1. Analvsis Information
2. Tests

3. Summary
4. Details

Analysis Information

MNodel Information

Model version 1.91
Author The MathWorks. Inc.
Last zaved Fri Dec 23 06:22:37 2016

Simulation Optimization Options

Default parameter behavior inlined
Block reduction forced off
Conditional branch optimization on
Coverage Options 77105

Analyzed model slvnvdemo powerwindow controller

7 Generating Test Cases

7-106

Finding Test Cases for Missing Coverage

Before you can use existing coverage data during test generation, the data must be saved
to a coverage data file(.cvt). You can use the existing coverage data by specifying the
coverage data path in the Coverage data file parameter and setting the Ignore
objectives satisfied in existing coverage data parameter to on in the Test
Generation pane of Simulink Design Verifier configuration parameters.

As you can see in the report, Simulink Design Verifier restricts test generation to the
coverage objectives that are not covered in the existing coverage file. Notice that 8
coverage objectives in the Stateflow chart control are proven to be unsatisfiable. This
indicates unnecessary redundant logic that cannot be tested.

cvsave('existingCovFromLoggedSignals', covDataFromLoggedSignals);

opts = sldvoptions;
opts.DisplayUnsatisfiableObjectives = 'off';

opts.IgnoreCovSatisfied = 'on';

opts.CoverageDataFile = 'existingCovFromLoggedSignals.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.TestSuiteOptimization = 'LongTestcases';
opts.SaveHarnessModel = 'on';

opts.ModelReferenceHarness = 'on';

[status, fileNames] = sldvrun('slvnvdemo powerwindow controller',opts,true);
[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel);

Creating and Executing Test Cases

@ Web Browser - Simulink Design Verifier Report I.‘:' (=] ﬁ]
| Simulink Design Verifier Report | + | H M E@ '!

da w)p O | s M | Location: | controller/slvvdemo_powerwindow_controller_report.html +

Simulink Design Verifier Report

slvnvdemo_powerwindow_controller

rajeevac

10-Jan-2017 11:19:33

Table of Contents

1. Summary
CAnalvsis Information

_ Test Objectives Status
. Model Items
. Test Cases

LA [[l |12

Chapter 1. Summary

Analysis Information

Model: slvnvdemo powerwindow controller
Mode: Test generation

Status: Completed normally

Analysis Time: 27s

Objectives Status

Number of Objectives: 52
Objectives Satisfied: 74
Objectives Proven Unsatisfiable: 8

7-107

7 Generating Test Cases

Merging Test Cases from Harness Models

Now use sldvmergeharness to combine generated test cases with logged test case. The
command takes a list of harness models as arguments.

sldvmergeharness (harnessModel, newHarnessModel);

) Signal Builder (skrnvdemo_powerwindow_controller_harness/Inputs) - | I:Ilil

File Edit Group Signal Axes Help L

SHEH| BR[| o |~ FREE] o0 o= R
Active Group: IIEE‘L'. Case 2 j EI - =

E bstac ” Hﬂ ”

e 0 T LT,
S T

0.5
0
1
0.5
0.5
0 . L i H H H 1 L
1 -
05k p-lassengerﬂi- ” H |- ﬂ H ’_|
0.5 —lpassengeriz'i -I_” -I
oL | — | | |I| | .
1 - (W ml ~—
0.5 | | passenger(3) H
o LIULJ . H”HHI“H . . | HH
0 2 4 6 B 10 12 14 16 18
Time (sec)
LLeft Poimnt Right Paint
Hame: Iendstl:lp iz I s I
Index: |1 '| 7 | ¥ |
Adjust segment Y position endstop (#1) [YMin ¥Max]

7-108

Creating and Executing Test Cases

Logging Test Cases of the Harness Model

In order to programmatically execute the model

slvnvdemo powerwindow controller with the test cases captured in the merged
harness model, first use the sldvlogsignals function to obtain the input values of all
test cases in the necessary data format.

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);
disp(loggedSignalsMergedHarness);

LoggedTestUnitInfo: [1x1 struct]
TestCases: [1x2 struct]

Execute the Model in Simulation mode with CGV API

Use the sldvruncgvtest function to execute the model
slvnvdemo powerwindow_controller in simulation mode, with test cases captured
from the harness model.

runopts = sldvruntestopts('cgv');
disp(runopts);

runopts.cgvConn = 'sim';
cgvSim = sldvruncgvtest('slvnvdemo powerwindow controller',...
loggedSignalsMergedHarness, runopts);

testIdx: []
allowCopyModel: 0O
cgvCompType: 'topmodel’
cgvConn: 'sim'

Starting execution:

ComponentType: topmodel

Connectivity: sim

InputData:

cgv_runtest\slvnvdemo powerwindow controller\slvnvdemo powerwindow controller cgv inj
End CGV execution: status completed
Starting execution:

ComponentType: topmodel

Connectivity: sim

InputData:

cgv_runtest\slvnvdemo powerwindow controller\slvnvdemo powerwindow controller cgv inj
End CGV execution: status completed

7-109

7 Generating Test Cases

7-110

Execute the Model in Software-In-the-Loop (SIL) mode with CGV API

Now use the sldvruncgvtest function to execute the model
slvnvdemo_powerwindow controller in SIL mode, with the same test cases.

if canUseSIL

runopts.cgvConn = 'sil’';

else
% When SIL is not possible, the example runs another simulation.
runopts.cgvConn = 'sim';

end
cgvSil = sldvruncgvtest('slvnvdemo powerwindow controller',...
loggedSignalsMergedHarness, runopts);

Starting execution:
ComponentType: topmodel
Connectivity: sil
InputData:
cgv_runtest\slvnvdemo powerwindow controller\slvnvdemo powerwindow controller cgv in
Starting build procedure for model: slvnvdemo powerwindow controller
Successful completion of build procedure for model: slvnvdemo powerwindow controll
Preparing to start SIL simulation ...
Starting SIL simulation for component: slvnvdemo powerwindow controller
Stopping SIL simulation for component: slvnvdemo powerwindow controller
End CGV execution: status completed
Starting execution:
ComponentType: topmodel
Connectivity: sil
InputData:
cgv_runtest\slvnvdemo powerwindow controller\slvnvdemo powerwindow controller cgv in
Starting build procedure for model: slvnvdemo powerwindow controller
Successful completion of build procedure for model: slvnvdemo powerwindow controll
Preparing to start SIL simulation ...
Starting SIL simulation for component: slvnvdemo powerwindow controller
Stopping SIL simulation for component: slvnvdemo powerwindow controller
End CGV execution: status completed

Compare Results of Simulation and SIL Modes

The sldvruncgvtest returns a cgv.CGV object after running tests. Use the CGV API to
compare the results of executions in simulation and SIL modes for each test case
designed in the harness model and show that they are equal.

for i=1:1length(loggedSignalsMergedHarness.TestCases)
simout = cgvSim.getOutputData(i);

Creating and Executing Test Cases

silout = cgvSil.getOutputData(i);

[matchNames, ~, mismatchNames, ~ 1 = ...
cgv.CGV.compare(simout, silout);

fprintf('\nTest Case(%d): %d Signals match, %d Signals mismatch',
i, length(matchNames), length(mismatchNames));
end

Test Case(1l): 4 Signals match, 0 Signals mismatch
Test Case(2): 4 Signals match, 0 Signals mismatch
Clean Up
To complete the example, close all models.
close system(harnessModel,0);
close system(newHarnessModel,0);

(

(

close system('slvnvdemo powerwindow');
close system('slvnvdemo powerwindow controller');

7-111

7 Generating Test Cases

Using Specified Input Minimum and Maximum Values as
Constraints

This example shows how to use input port minimum and maximum values as analysis
constraints by Simulink Design Verifier during both test generation and property proving.

7-112

Using Specified Input Minimum and Maximum Values as Constraints

Simulink Design Verifier
Using Specified Input Minimum and Maximum Values as Constraints

This example shows how to use input port minimum and maximum values as analysis constraints
by Simulink Design Verifier during both test generation and property proving.

This model is preconfigured to generate tests for decision coverage. The specified minimum and
maximum values are displayed in square brackets. The constraints in this example prevent some

of the coverage objectives from being satisfied. When you generate tests without considering these
constraints, all of the coverage objectives are satisfied.

(13— <=0 1.The Input1 and Input2 minimum and maximum values are
Input1 R captured directly on their respective inport signal attributes.
[1. 5 ..'1

2. The minimum and maximum values are specified on the

=10 Simulink.Signal objects associated with signals a and b.
|npun_sig'E‘ Simulink Design Verifier uses the signal object's values as
0. 0 El—» constraints. When multiple minimum and maximum values are
<> _ Out1_sig specified, e.g.. on the inport and on the signal object, Simulink
m—t b =0 Design Verifier considers their tightest range.

3. Simulink Design Verifier considers the minimum and maximum
limit ranges specified on Stateflow data that is directly connected
to the root-level input ports.

4. For subsystem analysis, the subsystem root-level specified
85I s50utf—w(2) input minimum and maximum values are considered. Observe
Input3 o Outz that generating tests for the Subsystem uses the constraints
0. m 20 te 20 Subsystem specified on SSIn, but ignores them for the system-level analysis.
View Options Run
(double-click) {double-click)

Change Simulink Design Verifier Options Run Simulink Design Verifier

Copyright 2010-2012 The MathWorks, Inc.

7-113

7 Generating Test Cases

Configuring S-Function for Test Case Generation

This example shows how to compile an S-Function to be compatible with Simulink®
Design Verifier™ for test case generation. SLDV supports S-Functions that are:

* Generated with the Legacy Code Tool, with
def.Options.supportCoverageAndDesignVerifier setto true,

* Generated with the SFunctionBuilder, with Enable support for Design Verifier
selected on the Build Info tab of the SFunctionBuilder dialog box, or

* Compiled with the function slcovmex, with the option -sldv passed.
Compile S-Function to Be Compatible with Simulink® Design Verifier™

The handwritten S-Function is found in the file sldvexSFunctionHandlingSFcn.c, and the
user source code for the lookup table is found in the file
sldvexSFunctionHandlingSource.c. Call the function slcovmex to compile the C-MEX S-
Function and make it compatible with SLDV.

slcovmex('-sldv',
"-output', 'sldvexSFunctionHandlingSFcn',...

['-T', fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src')l],

fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHa
fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHa

)

C:\Program Files (x86)\Windows Kits\10\include\10.0.17134.0\ucrt\corecrt math.h, line ¢

|To analyze all standard function bodies, use the option

-standard-library-functions

[

C:\Program Files (x86)\Windows Kits\10\include\10.0.17134.0\ucrt\corecrt math.h, line -

|To analyze all standard function bodies, use the option

-standard-library-functions

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

7-114

option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt _math.h, line
option "-standard-library-functions

[

0.17134.0\ucrt\corecrt math.h, line -

[

Configuring S-Function for Test Case Generation

C:\Program Files (x86)\Windows Kits\10\include\10
|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

C:\Program Files (x86)\Windows Kits\10\include\10.

|To analyze all standard function bodies, use the

.0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions
0.17134.0\ucrt\corecrt math.h, line
option "-standard-library-functions

option "-standard-library-functions
option "-standard-library-functions
option "-standard-library-functions
option "-standard-library-functions
option "-standard-library-functions
option "-standard-library-functions

option "-standard-library-functions

0.17134.0\ucrt\corecrt math.h, line
0.17134.0\ucrt\corecrt math.h, line
0.17134.0\ucrt\corecrt math.h, line
0.17134.0\ucrt\corecrt math.h, line
0.17134.0\ucrt\corecrt math.h, line
0.17134.0\ucrt\corecrt math.h, line

0.17134.0\ucrt\corecrt math.h, line

é
l
é
l
é
l
é
l
é
l
é
l
é
l
(
l
(
l
(
l
(
l
(
l
(
l
(
l

mex -IB:\matlab\toolbox\sldv\sldvdemos\src C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\1\tp7:

Building with 'Microsoft Visual C++ 2017 (C)"'.
MEX completed successfully.

mex -IB:\matlab\toolbox\sldv\sldvdemos\src B:\matlab\toolbox\sldv\sldvdemos\src\sldvex

Building with 'Microsoft Visual C++ 2017 (C)"'.
MEX completed successfully.

Create Test Suite

The example model sldvexSFunctionHandlingExample example contains the handwritten
S-Function, which implements a lookup table algorithm. The S-Function block returns the
interpolated value at the first output port and returns the status of the interpolation at the
second output port. The second output port returns the value -1 if a lower saturation
occurs, 1 if a upper saturation occurs, and 0 otherwise. Open the
sldvexSFunctionHandlingExample model and configure the analysis options by turning on

7-115

matlab:sldvexSFunctionHandlingExample

7 Generating Test Cases

7-116

S-Function support for test generation. On running the analysis, Simulink® Design
Verifier™ returns a test suite that satisfies all coverage objectives.

open_system('sldvexSFunctionHandlingExample');

opts = sldvoptions;

opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'Condition';
opts.SaveHarnessModel = 'off"';
opts.SaveReport = 'off';

opts.SFcnSupport = 'on';

opts.MaxProcessTime = 2*opts.MaxProcessTime;

[status, fileNames] sldvrun('sldvexSFunctionHandlingExample', opts);

Checking compatibility for test generation: model 'sldvexSFunctionHandlingExample'
Compiling model...done

Building model representation...done

"sldvexSFunctionHandlingExample' is compatible for test generation with Simulink Desigi

Generating tests using model representation from 27-Aug-2019 17:34:14...

Completed normally.
Generating output files:
Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\1\tp86cead77\sldv_output\sldvexSFunctionHand’

Configuring S-Function for Test Case Generation

Simulink Design Verifier
S-Function Handling for Test Generation

double
»(1)
double InterpolatedData
sldvexSFunctionHandlingSFon {-1,0, 1}
InputData ints int&

boolean

SaturationOccurad

iEMotZero

This model contains a handwritten S-Function which implements a lookup table algorithm. The S-Function
block returns the interpolated value at the first output port and returns the status of the interpolation at the
second output port.

The second output port returns the value -1 if a lower saturation occurs, 1 if a upper saturation

occurs, and O otherwise.

Open
Run View Options
s-n;:::nn 'T'I;'T' {double-click) (double—click)

Open Source Files

Copyright 2015 The Math\Works, Inc.

Verifying Complete Coverage

The sldvruntest function verifies that the test suite achieves complete model coverage.
The cvhtml function produces a coverage report that indicates 100% Condition coverage
is achieved with the generated test vectors.

[~, finalCov] = sldvruntest('sldvexSFunctionHandlingExample', fileNames.DataFile, [1, -
cvhtml('Final Coverage', finalCov);

7-117

7 Generating Test Cases

Clean Up

To complete the demo, close all models.

close system('sldvexSFunctionHandlingExample', 0);

7-118

Code Coverage Test Generation

Code Coverage Test Generation

This example shows how to use Simulink® Design Verifier™ to generate test cases to
obtain complete code coverage.

You first collect code coverage for an example model configured for Software-in-the-Loop
(SIL) simulation mode. Then you use Simulink® Design Verifier™ to create a new test
suite that generates tests cases to achieve the missing coverage. Finally, you execute the
generated test cases in Software-In-the-Loop (SIL) simulation mode to verify the complete
coverage.

Check Product Availability

This example requires valid Simulink® Coder™ and Embedded Coder™ licenses.

if ~(license('test', 'Real-Time Workshop') && ...
license('test', 'RTW Embedded Coder'))
return

end

Initial Setup

Make sure an unedited version of the model is open.

model = 'sldvdemo cruise control';
close system(model, 0)
open_system(model)

Configure the Model to Measure Code Coverage

Before running the simulation, set the model parameters to run in SIL mode and to collect
code coverage metrics with Simulink® Coverage™.

set param(model, ...
'SimulationMode', 'Software-in-the-Loop (SIL)',...
'SystemTargetFile', 'ert.tlc',...
'LaunchReport', 'off',...
'PortableWordSizes', 'on',...
'CovEnable', 'on');

% Remove any existing build folders.

buildFolder = RTW.getBuildDir(model);
if exist(buildFolder.BuildDirectory, 'dir')

7-119

7 Generating Test Cases

rmdir(buildFolder.BuildDirectory, 's');
end

Run Simulations in SIL Mode

Collect code coverage results using the cvsim command and produce a coverage report.
The cvhtml function produces a coverage report that indicates the initial coverage of the
sldvdemo cruise control model.

initialCov = cvsim(model);

cvhtml('sil initial coverage', initialCov);

Summary
File Contents/Complexity Test 1
Decision Condition MCDC Statement Function Function call
1. sldvdemo cruise control.c 9 36% mm 13% m 0% 687 — 100% o— 100% ———
2...sldvdemo cruise control step 7 36% mmm 13% m 0% 53% — 100% —
3...sldvdemo cruise control initialize 1 - - - 100% oo 100% ————m 100% —
4, .. sldvdemo cruise control terminate 1 — - - 100% o— 100% ——

7-120

Find Test Cases for Missing Coverage

Analyze the sldvdemo_cruise control model with Simulink® Design Verifier™ to
generate a test suite that achieves increased code coverage. Set the Simulink® Design
Verifier™ options to generate test cases to achieve MCDC coverage for the top model.

opts = sldvoptions;

opts.TestgenTarget = 'GenCodeTopModel"';

opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'MCDC';
opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off"';

[~, files] = sldvrun(model, opts, true, initialCov);

Code Coverage Test Generation

Simulink Design Verifier Results Summary: sldvdemo_cruise_control + 0 X

Progress -
Objectives processed 24/24

Satisfied 0

Unsatisfiable 0

Elapsed time 0:09

Test generation (for code generated from top model) completed normally.
24/24 objectives are satisfied - needs simulation.

Results:

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report; (HTML] (PDF)

* Create harness model

* Export test cases to Simulink Test

s Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdata2.mat
in folder: ftmp/tpcas3d36f eroy-deb8-64/sldv_output/sldvdemo_cruise control

Verify Complete Coverage
The sldvruntest function simulates the model with the generated test suite. The

cvhtml function produces a coverage report that indicates the final coverage of the
sldvdemo cruise control model.

7-121

7 Generating Test Cases

[~, finalCov] = sldvruntest(model, files.DataFile, [], true);

cvhtml('sil final coverage', finalCov);
close system(model, 0);

Summary
File Contents/Complexity Test 1
Decision Condition MCDC Statement
1. sldvdemo cruise control.c 10 100% oo 100% ——— (00% — 100% —
2...sldvdemo cruise control step 8 100% oo 100% ——— 00% ——— 100% —
3...sldvdemo cruise control initialize 1 - i = 100% —
4. ..sldvdemo cruise control terminate 1 - - - 100% e—

7-122

Function

100%
100%
100%
100%

Function call

100% e——

Test Generation on Model with C Caller Block

Test Generation on Model with C Caller Block

This example shows how to use test generation on a model with a C Caller block and
custom C code

Open the model containing the C Caller block and custom code

open_system('sldvexCCallerBlockExample');

Simulink Design Verifier
Test Case Generation with C Caller Block

r
@ input _L!SIGNALEIUS — bl:l
intﬁi nputsignal LE P
SIGNALBUSCreatie LBU
COUNTERBUS N

40

ut 1 > - s]
counterbusFon “upper_saturation_limit=

COUNTEREUS

u :J:E'_samratinn_lir'iiltﬁ

u2 y2 l—.@
<lower_saturation_Emit=

t=
int32 COUNTERBUSCreator

ower_saturation_limit

LIMITBUSCreator

Copyright 2018 The MathWorks, Inc.

Generate tests to ensure coverage of the model

Use the sldvrun function to run Simulink ® Design Verifier ™ analysis.
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'ConditionDecision';

opts.SaveHarnessModel = 'off"';
opts.SaveReport = 'off';

[status, fileNames] = sldvrun('sldvexCCallerBlockExample', opts);

Checking compatibility for test generation: model 'sldvexCCallerBlockExample'

7-123

7 Generating Test Cases

7-124

Compiling model...done
Building model representation...done

'sldvexCCallerBlockExample' is compatible for test generation with Simulink Design Ver

Generating tests using model representation from 27-Aug-2019 17:52:58...

Completed normally.
Generating output files:
Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\5\tp77556a7a\ex07804984\sldv output\sldvexCC:

Verify the coverage

Use the sldvruntest function to verify that the test suite achieves complete model
coverage.

[~, finalCov] = sldvruntest('sldvexCCallerBlockExample', fileNames.DataFile, [], true)
cvhtml('Final Coverage', finalCov);

Clean Up
To complete the example, close all models.

close system('sldvexCCallerBlockExample', 0);

Test Generation for Custom Code in a Stateflow Chart

Test Generation for Custom Code in a Stateflow Chart

This example shows how to use test generation on a model with custom code in a
Stateflow chart.

Open the model containing custom code in a Stateflow chart

open_system('sldvexSFCustomCodeExample');

Simulink Design Verifier
Test Case Generation with C/C++ Custom Code

[

input L!SIGNALEIUS

I
P

D

40

u :-:-E'_sawratinn_lir'iiltig

ower_saturation_limit

<inpan>
— 1—»

— |
nbu outbus e — - I:l
\' <upper_saturation_|imits
— |

int35i nputsignal LE
SIGNALBUSCreatur LEU

COUNTERBUS
COUNTEREUS

.0, —

. » <lower_saturation_Emit=>

Y

Py
P

imits

inta2 COUNTERBUSCreator

72 -

LIMITBUSCraator

Copyright 2018 The MathWorks, Inc.

Generate tests to ensure coverage of the model

Use the sldvrun function to run the Simulink® Design Verifier™ analysis.
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'ConditionDecision';
opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off';

[status, fileNames] = sldvrun('sldvexSFCustomCodeExample', opts);

Checking compatibility for test generation: model 'sldvexSFCustomCodeExample'

7-125

7 Generating Test Cases

7-126

Compiling model...done
Building model representation...done

'sldvexSFCustomCodeExample' is compatible for test generation with Simulink Design Ver:

Generating tests using model representation from 27-Aug-2019 17:50:12...

Completed normally.
Generating output files:
Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\5\tp77556a7a\ex18712703\sldv_output\sldvexSF(

Verify the coverage

Use the sldvruntest function to verify that the test suite achieves complete model
coverage.

[~, finalCov] = sldvruntest('sldvexSFCustomCodeExample', fileNames.DataFile, [], true)
cvhtml('Final Coverage', finalCov);

Clean Up
To complete the example, close all models.

close system('sldvexSFCustomCodeExample', 0);

Extending Existing Test Cases

* “When to Extend Existing Test Cases” on page 8-2

+ “Extend Test Cases for Model with Temporal Logic” on page 8-4
* “Extend Test Cases for Closed-Loop System” on page 8-12

+ “Extend Test Cases for Modified Model” on page 8-18

8 Extending Existing Test Cases

When to Extend Existing Test Cases

8-2

In this section...

“Common Workflow for Extending Existing Test Cases” on page 8-3

“Considerations for Starting Test Cases” on page 8-3

The Simulink Design Verifier software can analyze your model using previously generated
test cases that you specify. You can use this feature in the following situations:

* You encounter delays trying to analyze your model, or you see incomplete results. This
can happen if your model has any of the following characteristics:

* Temporal logic
* Large counters
* Model objects that are difficult to test due to complex or nonlinear logic

Analyzing the model and considering the existing test cases allows you to focus the
analysis on those parts of the model that are difficult to analyze. You can combine the
generated test cases to create a complete test suite for the full model.

For an example of extending existing test cases for a model that uses temporal logic,
see “Extend Test Cases for Model with Temporal Logic” on page 8-4.

* You have a closed-loop simulation model that uses a Model block to include the
controller. First, log the data from the Model block and then analyze the model
referenced by the Model block. Using this technique, the test cases for the controller
can realistically reflect the continuous time behavior expected in the closed-loop
system.

For an example of extending existing test cases for a closed-loop system, see “Extend
Test Cases for Closed-Loop System” on page 8-12.

* You change an existing model for which you have already generated test cases. In this
situation, you can reanalyze the model, omitting the analysis results from the original
version of the model. The combined test cases give you a complete test suite for the
new model.

For an example of extending existing test cases for modified models, see “Extend Test
Cases for Modified Model” on page 8-18.

* You apply parameter configurations or update the parameter constraint values of an
existing model for which you have generated test cases. In this situation, you can

See Also

reanalyze the model by reusing the previously generated test cases and extend them
to achieve full model coverage. For an example of extending existing test cases when
you modify parameter configurations, see “Extend Existing Test Cases After Applying
Parameter Configurations” on page 5-47.

Common Workflow for Extending Existing Test Cases

Use the following workflow for extending existing test cases during a test-generation
analysis:

* Create the starting test cases.

* Log the starting test cases.

* Extend the existing test cases during test-generation analysis.

» Verify that you have created a complete test suite.

The examples in this category use some or all of these tasks when extending existing test
cases during analysis.

Considerations for Starting Test Cases

If the existing test cases are inconsistent with the model, Simulink Design Verifier ignores
the test cases during test case extension. For example, if you update the constraint values
of parameters and the existing test case violates the specified constraint values, the test
case will be ignored.

See Also

More About

. “Extend Test Cases for Model with Temporal Logic” on page 8-4
. “Extend Test Cases for Closed-Loop System” on page 8-12
. “Extend Test Cases for Modified Model” on page 8-18

8-3

8 Extending Existing Test Cases

Extend Test Cases for Model with Temporal Logic

8-4

In this section...

“Create Starting Test Case” on page 8-4
“Log Starting Test Case” on page 8-7
“Extend Existing Test Cases” on page 8-8
“Verify Analysis Results” on page 8-10

Create Starting Test Case

This example uses the sldvdemo sbr extend design model. This model includes a
Stateflow chart SBR that uses temporal logic. The transition from the KEY OFF state to
the KEY_ON state occurs after the Stateflow chart has been simulated 500 times. To test
this transition requires a test case with 500 time steps.

In this example, you create a test case that forces the transition to KEY ON by setting the
KEY input to 1 for the duration of the test case. You simulate the model using this test
case, satisfying the objectives for the KEY OFF/KEY ON transition. Then you analyze the
model, ignoring the objectives already satisfied by the test case you create.

1

Open the example model:

sldvdemo sbr extend design
Open the SBR Stateflow chart to see the KEY_OFF/KEY_ON transition.

KEY_OFF
SeatBeltican=0;

[afterfa00 tick)] | T __
] KEY==1]

¥ i

rREv_ON

Create a model reference harness model:

[~, harnessModelFilePath] = ...
sldvmakeharness('sldvdemo sbr extend design',[],[],true);

The harness model, sldvdemo sbr extend design harness, includes:

matlab:sldvdemo_sbr_extend_design

Extend Test Cases for Model with Temporal Logic

* A Model block named Test Unit that references the original model,
sldvdemo sbr extend design.

sldwdermo_sbr_extend_design

W Inputs SeatBeltlcon -

Test Lnit

* A Signal Builder block named Inputs that contains the test-case inputs to the
model referenced in the Model block.

Test Z 1
mak -ase Inputs,Spead —

"""+ Inputs.SeatBeltFasten

Inputs KEY —

Inpis

Initially, the Signal Builder block contains only the default test case, with all three
inputs set to 0.

* A DocBlock block named Test Case Explanation that documents the test case.

=
[le e

Tauxt
Test Case Explanation

Initially, the Test Case Explanation block does not have any content for the default
test case.

4 sldvmakeharness returns the path to the harness model file in
harnessModelFilePath. Extract the name of the harness model file into
harnessModel, for later use:

[~, harnessModel] = fileparts(harnessModelFilePath);

In order to analyze the KEY OFF to KEY ON state transition, create a test case that makes
the transition to the KEY_ ON state in 500 time steps:

8 Extending Existing Test Cases

8-6

Open the Signal Builder dialog box for the harness model.
Select Axes > Change Time Range.

The Signal Builder's time range determines the span of time over which its output is
explicitly defined. In the Set the total time range dialog box, set the Max time field
to 5 seconds, creating 500 time steps of 0.01 seconds duration each.

4 Set the KEY input to 1 for the duration of this starting test case, forcing the transition
to the KEY ON state. Selecting the Inputs.KEY signal requires two clicks. First,
click the signal so that dots appear at both ends of the signal.

:I I]]]]]] |]] |

Inputs. KEY ' ' '
0 +
1 i i i i i i | i i i
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)
5 Click the Inputs.KEY signal again. The Signal Builder thickens the signal to indicate
that it is selected.

) S L L | L L [S L L |

Inputs. KEY

1 i i i i i i | i i i
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)

6 At the bottom of the Signal Builder dialog box, under Left Point, enter 1 for Y.
7 Press Enter to apply the change.

The Inputs.KEY signal is set to 1 for the duration of the test case.

Extend Test Cases for Model with Temporal Logic

§

1 1 1 1 1 1 1 L 1 1
"""""""" o Bt e e e el Bl el il |

Inputs KEY

i |
3.5 4 45 5

N,
Bl f—------
b f—------

0.5 1.5 2.5

Time (sec)

Close the Signal Builder dialog box.

Log Starting Test Case

The next step is to log the starting test case that you created. You can then specify that
Simulink Design Verifier ignore the objectives satisfied by that test case when performing
an analysis.

The sldvlogsignals function records the test case data in a MAT-file that contains an
sldvData structure. This structure stores all the data that the software gathers and
produces during the analysis.

To log the starting test cases:

1

Save the name of the Model block in the harness model that references the
sldvdemo sbr extend design model:

[~, modelBlock] = find mdlrefs(harnessModel, false);

Simulate the model referenced by the Model block using the new test case, and log
the input signals in the workspace variable loggeddata:

loggeddata = sldvlogsignals(modelBlock{1});
Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'loggeddata');

You will specify this file when you analyze the sldvdemo sbr extend design
model.

8 Extending Existing Test Cases

8-8

Extend Existing Test Cases

You can now analyze the sldvdemo sbr extend design model and specify that the
analysis extend the test cases already satisfied. The analysis uses the existing test-case
data as a starting point, and does not try to generate test cases for the KEY OFF to
KEY ON transition in the SBR Stateflow chart.

Specify the starting test case and analyze the model:

1

Open the model.

open_system('sldvdemo sbr extend design');
On the Design Verifier tab, click Test Generation Settings.

In the Configuration Parameters dialog box, on the Test Generation pane, under
Existing test cases, select Extend existing test cases.

In the Data file field, enter the name of the MAT-file that contains the logged data:

existingtestcase.mat
Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the starting test case in the final
test suite. You will see that the complete test suite achieves 100% model coverage.

To close the Configuration Parameters dialog box, click OK.

Save the sldvdemo sbr extend design model on the MATLAB path with the
name sldvdemo sbr extend design test.

Click Generate Tests.

The log window first lists the objectives that the starting test case satisfied.

Extend Test Cases for Model with Temporal Logic

| Simulink Design Verifier Results Summary: sldvdemo_sbr_extend_design_test
Progress [|
Objectives processed 2{37
Satisfied 2
Unsatisfiable 0
Elapsed time 0:45
Ly

21-Nov-2018 17:33:20

Checking compatibility for test generation: model
'sldvdemo_sbr_extend_design_test’

Compiling model...done

Building model representation...done

21-Mov-2018 17:33:27
'sldvdemo_sbr_extend_design_test' is compatible for test generation with Simulink
Design Verifier.

Loading initial test data...
Generating tests using model representation from 21-Mov-2018 17:33:27...

SATISFIED

Chart "SBR"

Substate executed State "KEY_OFF"
Analysis Time = 00:00:43

SATISFIED

Disable Highlighting Stop

The log window then lists the objectives generated beyond the starting test case.

8-9

8 Extending Existing Test Cases

Verify Analysis Results

To make sure that this analysis creates a complete test suite, generate the harness model
so you can simulate the model with the generated test cases:

1 On the Design Verifier tab, in the Review Results section, click Create Test
Harness Model.

2 Inthe harness model sldvdemo sbr extend design test harness, open the
Signal Builder block named Inputs.

3 To simulate the model using all the test cases, click the Run all and produce

all

coverage button LA

When the simulation is complete, the model coverage report is displayed.

4 View the coverage information for the sldvdemo sbr extend design test
model to see that the complete test suite achieves 100% coverage.

Summary
Meadel Hierarchy/Complexity: Test 1
O
1. slgwvdemo sor sxteng design test 24 100%%
2 ...SBR 20 100%
3. ... SF: SBR 19 100%
S SF. KEY CHN 12 100% E—
B SF: SB UNFASTEN 2 100% I
G ... SF. HIGH SPEED 4 100% S
See Also
More About

. “When to Extend Existing Test Cases” on page 8-2

8-10

See Also

“Extend Test Cases for Closed-Loop System” on page 8-12
“Extend Test Cases for Modified Model” on page 8-18

8-11

8 Extending Existing Test Cases

Extend Test Cases for Closed-Loop System

8-12

In this section...

“Log Starting Test Case” on page 8-12

“Extend Existing Test Cases” on page 8-15

Suppose that you have a model with a closed-loop controller in a model referenced by a
Model block. You do not record 100% coverage for the referenced model. Extending
existing test cases can help you achieve 100% coverage. The Simulink Design Verifier
software adds time steps to the existing test cases when analyzing the controller
implemented by the referenced model. The test cases that result from the analysis
realistically reflect the continuous time behavior expected in the closed-loop controller.

A closed-loop controller passes instructions to the controlled system and receives
information from the environment as the control instructions execute. The controller can
adapt and change its instructions as it receives this information.

Log Starting Test Case

This example uses the sldemo_mdlref basic model. The CounterA Model block
references the model sldemo _mdlref counter. When you simulate the parent model,
sldemo _mdlref basic, and collect coverage, you record only 75% coverage for
sldemo mdlref counter. Log the data from the simulation and extend those test cases
to achieve 100% coverage for the referenced model.

1 Open the example model:

sldemo_mdlref basic
2 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.
3 On the Coverage tab, click Settings.

In the Coverage pane of the Configuration Parameters, select Enable coverage
analysis.

5 Select Referenced Models.

Note that the analysis records coverage only for referenced models with Simulation
mode set to Normal, SIL, or PIL. In sldemo _mdlref basic, the CounterC Model

matlab:sldemo_mdlref_basic

Extend Test Cases for Closed-Loop System

block has Simulation mode set to Accelerator, so you cannot record coverage for
it.

Under Coverage metrics, set the structural coverage level to Modified Condition
Decision Coverage (MCDC) to record decision, condition, and modified condition/
decision coverage.

Click OK.
Click Analyze Coverage.

To open the coverage report, in the Review Results section, click Generate Report.

When the simulation completes, the generated coverage report opens in a browser
window. The report shows the following coverage results for the referenced model:
* Condition: 50% (2/4) condition outcomes

* Decision: 25% (1/4) decision outcomes

* MCDC: 0% (0/2) conditions reversed the outcome

The coverage results are also highlighted in the referenced model,

sldemo _mdlref counter. You can select individual model objects to view specific
coverage results in the Coverage dialog box, as shown in the following screenshot.

8-13

8 Extending Existing Test Cases

CounterA
@ 4 |["alsidemo_mdiref_basic ¥ [Bg] CounterA (sidemo_mdiref_counter) -
@
£3
=
=] r -
Switch trigger was never false
&= {out = in3).
Full Execution coverage.
] g

>
Ready 96% FixedStepDiscrete ..

9 To log the input signals for the CounterA Model block in sldemo_mdlref basic
during simulation, at the MATLAB command prompt, enter the following code:

logged data = sldvlogsignals('sldemo mdlref basic/CounterA');
10 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'logged data');

When you analyze the model referenced in CounterA (sldemo _mdlref counter)to
extend existing test cases, you specify this MAT-file.

8-14

Extend Test Cases for Closed-Loop System

Extend Existing Test Cases

Analyze the sldemo _mdfref counter model, specifying that the analysis extend the
test cases already satisfied:

1

To open the sldemo _mdfref counter model, in the sldemo mdlref basic
model, double-click the CounterA Model block.

On the Design Verifier tab, click Test Generation Settings.

In the Configuration Parameters dialog box, on the Test Generation pane, in the
Model coverage objectives box, select MCDC.

Under Existing test cases, select Extend existing test cases.

In the Data file field, specify the name of the MAT-file that contains the logged data,
in this case, existingtestcase.mat.

Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the test cases recorded in the file
existingtestcase.mat in the final test suite.

Click OK.
Click Generate Tests.

The analysis first loads the objectives satisfied by the logged test cases. Then it adds
extra time steps to those test cases and tries to satisfy any missing objectives. When
the analysis completes, the Simulink Design Verifier log window opens and indicates
that all 12 objectives are satisfied.

To view the analysis results on the model, in the Simulink Design Verifier log window,
select Highlight analysis results on model.

The Simulink Design Verifier results are highlighted in the referenced model,
sldemo mdlref counter. You can select individual model objects to view specific
analysis results in the Simulink Design Verifier Results dialog box, as shown in the
following screenshot.

8-15

8 Extending Existing Test Cases

sldemo_mdlref _counter

= sldemu:u_rndlref_c-:uunter b
&
o | O —

uppar
=

(2 > lowe] =

lowwer output
®

upper]

[: - F R
|:| + ingut

imput L

N AaMD lirmit
upper] T
ower] B L
fower>—a1—
presious_outpul 1
Previous Output
Ll | P4 Results: sidemo_mdiref_counter — O X
-H - &2
= Back to summary
sldemo_mdlref_counter/Switch

Ready logical trigger input false (output is SATISFIED - View test case

8-16

from 3rd input port)

from 1st input port)

logical trigger input true (output is SATISFIED - View test case

10 To verify the results of the analysis and review the generated test cases, in the
Simulink Design Verifier log window, select Generate detailed analysis report.

See Also

11 To collect model coverage using the extended test suite, in the Simulink Design
Verifier log window, select Simulate tests and produce a model coverage report.

When the simulation completes, the generated coverage report opens in a browser

window. The report now shows the following coverage results for the referenced
model sldemo _mdlref counter:

* Condition: 100% (4/4) condition outcomes
* Decision: 100% (4/4) decision outcomes
* MCDC: 100% (2/2) conditions reversed the outcome

See Also

More About

. “When to Extend Existing Test Cases” on page 8-2
. “Extend Test Cases for Model with Temporal Logic” on page 8-4
. “Extend Test Cases for Modified Model” on page 8-18

8-17

8 Extending Existing Test Cases

Extend Test Cases for Modified Model

8-18

In this section...

“Create Starting Test Cases” on page 8-18
“Extend Existing Test Cases” on page 8-19

Suppose that you have a model that you have already analyzed using Simulink Design
Verifier, and you modify the model. The original test suite may not record 100% coverage
for the modified model. Reanalyze the modified model to make sure that it satisfies all the
new test objectives. Instead of reanalyzing the entire model, you focus the new analysis
on just the modified part of the model. In this way, you leverage the test cases created for
the original model, extending them to satisfy any new objectives.

This example uses the sldvdemo cruise control model. You analyze the model and
generate test cases. Then you analyze a modified version of that model,

sldvdemo cruise control mod, extending the test cases from the original analysis.
The analysis returns a complete test suite for the new model.

Create Starting Test Cases

Analyze the sldvdemo cruise control model and generate test cases that achieve
100% coverage.

1 Open the example model:

sldvdemo cruise control

2 To start a Simulink Design Verifier analysis for the sldvdemo_cruise control
model, double-click the Run Simulink Design Verifier block.

Run
{double-click)

Run Simulink Design Verifier

The analysis satisfies 34 test objectives for the sldvdemo cruise control model.
The software stores the resulting data file in a subfolder of the MATLAB Current
Folder:

matlab:sldvdemo_cruise_control

Extend Test Cases for Modified Model

sldv_output\sldvdemo cruise control\sldvdemo cruise control sldvdata.mat
In the next section, when you analyze the modified model, this data file specifies the
starting test cases that you extend.

Close the sldvdemo cruise control model and all the files created by the
analysis. If asked, do not save any changes you made to the model.

Extend Existing Test Cases

The sldvdemo cruise control mod model is a modified version of
sldvdemo_cruise control. The Controller subsystem contains a Saturation block that
specifies that the target speed cannot exceed 70.

Open the modified model and analyze it, extending the test cases that you generated
when analyzing the sldvdemo cruise control model:

1

Open the example model, the modified version of sldvdemo cruise control:

sldvdemo _cruise control mod

Double-click the Controller subsystem to see the change to the original model, a
Saturation block that specifies the maximum speed:

:‘l_\ Ta_[

i Saturation

Close the Controller subsystem.
On the Design Verifier tab, click Test Generation Settings.

In the Configuration Parameters dialog box, on the Test Generation pane, under
Existing test cases, select Extend existing test cases.

In the Data file field, click Browse and navigate to the MAT-file created in the
MATLAB Current Folder when analyzing the original model:

sldv_output\sldvdemo cruise control\sldvdemo_cruise control_sldvdata.mat

Clear Ignore objectives satisfied by existing test cases.

8-19

matlab:sldvdemo_cruise_control

8 Extending Existing Test Cases

When you clear this option, the analysis includes the test cases recorded in the file
sldvdemo_cruise control sldvdata.mat in the final test suite.

Click Apply to save these settings.
9 To start the analysis, click Generate Tests.

The analysis first loads the 34 objectives satisfied by the initial test cases. Then it
adds extra time steps to those test cases and tries to satisfy any missing objectives.

10 In the Results Summary window, click Generate detailed analysis report.
The analysis satisfied a total of 38 satisfied objectives for the

sldvdemo cruise control mod model. The analysis satisfied four additional
objectives that correspond to the Saturation block.

Objectives Satisfied

simulink Design Verifier found test cases that exercise these test objectives.

Test

[Type Model ltem Description Case

logical trigger input
1 Decision |Controller/Switchi false (output is from 3
3rd input port)

logical trigger input

2 |Decision |ControllerSwitchi true (output is from 1st [1
input port)
3 |Decision |ControllerSaturation input = lower limit F il
4 |Decision |Controller/Saturation input = lower limit T 3
5 |Decision |Controller/Saturation input == upper limit F |1
£ |Decision |[Controller’Saturation input == upper limit T 10
See Also
More About

. “When to Extend Existing Test Cases” on page 8-2

8-20

See Also

“Extend Test Cases for Model with Temporal Logic” on page 8-4
“Extend Test Cases for Closed-Loop System” on page 8-12

8-21

Achieving Test Cases for Missing
Model Coverage

* “Generate Test Cases for Missing Coverage Data” on page 9-2

* “Achieve Missing Coverage in Referenced Model” on page 9-3

* “Missing Coverage in Subsystems and Model Blocks” on page 9-12

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13

* “Modified Condition and Decision Coverage in Simulink Design Verifier” on page 9-17

9 Achieving Test Cases for Missing Model Coverage

Generate Test Cases for Missing Coverage Data

9-2

If you simulate your model and record coverage data, but your model does not achieve
100% coverage, Simulink Design Verifier can find test cases that achieve the missing
coverage. The software targets the test-generation analysis for the part of the model that
is missing coverage, ignoring the model coverage data that was recorded during
simulation.

The following examples describe how to focus the test-generation analysis on a part of the
model that did not achieve 100% coverage:

* “Achieve Missing Coverage in Referenced Model” on page 9-3
* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13

See Also

Achieve Missing Coverage in Referenced Model

Achieve Missing Coverage in Referenced Model

If you simulate a referenced model that does not achieve full coverage, you can use
Simulink Design Verifier to generate test cases that achieve full coverage. There are two
approaches:

Programmatically achieve missing coverage: Generate test cases for a referenced
model with APIs for test-generation analysis.

Incrementally increase coverage: Generate test cases for the test harness model with
missing coverage analysis features.

Programmatically Achieve Missing Coverage in Referenced
Model

“Record Coverage Data for Example Model” on page 9-3
“Find Test Cases for the Missing Coverage” on page 9-5
“Achieve Missing Coverage” on page 9-5

“Verify Complete Model Coverage” on page 9-6

This example model uses a referenced model that does not achieve full coverage. When
you run a test-generation analysis on the referenced model and combine it with previously
recorded coverage data, you can achieve 100% coverage for the referenced model.

Record Coverage Data for Example Model

Simulate the example model. Record condition, decision, and MCDC coverage.

1

Open the example model:
sldemo _mdlref basic

The Model blocks CounterA, CounterB, and CounterC reference the model
sldemo mdlref counter.

On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.
On the Coverage tab, click Settings.

On the Coverage pane of the Configuration Parameters dialog box, set the following
options:

9-3

9 Achieving Test Cases for Missing Model Coverage

9-4

* Select Enable coverage analysis.
* Select Referenced Models.

* Click Select Models. In the Select Models for Coverage Analysis dialog box,
select the check box for the referenced model sldemo mdlref counter. Click
OK.

The check box for sldemo _mdlref counter becomes visible, corresponding to
CounterA and CounterB. Coverage is not enabled for CounterC because the
reference model CounterC is in Accelerator simulation mode.

» Specify which types of coverage to record during simulation. Under Coverage
metrics, select MCDC.

In the Coverage > Results pane of the Configuration Parameters. Set the following

options:

* Select Save last run in workspace variable to save the collected coverage data
from the most recent simulation run in a variable in the MATLAB workspace.

* Select Generate report automatically after analysis to specify that the
simulation create a coverage report.

* In the cvdata object name field, enter covdata original to specify a unique
name for the coverage data workspace variable.

Click OK.

To record the coverage data, start the simulation of the sldemo _mdlref basic
model.

After the simulation, the coverage report opens. The report indicates that the
following coverage is achieved for the referenced model sldemo mdlref counter:

¢ Decision: 25%
* Condition: 50%
« MCDC: 0%

The simulation saves the coverage data in the MATLAB workspace variable
covdata original, a cvdata object that contains the coverage data.

Save the coverage data in a file on the MATLAB path:
cvsave('existingcov',covdata original);

Keep the model open as you continue through this example.

Achieve Missing Coverage in Referenced Model

Find Test Cases for the Missing Coverage

To achieve 100% coverage for the sldemo mdlref counter model, run a test-
generation analysis that uses the existing coverage data.

1 Open the referenced model. At the command line, enter:

open_system('sldemo _mdlref counter');
2 Create an sldvoptions object:

opts = sldvoptions;
When you create the sldvoptions object, specify:

» That the analysis ignores satisfied coverage data.
* The file name containing the satisfied coverage data (existingcov.cvt)

Enter the following commands to specify these options:

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';
3 Analyze the referenced model, sldemo_mdlref counter, by using the specified
options:
[status, fileNames] = sldvrun('sldemo mdlref counter',opts,true);

The Simulink Design Verifier analysis satisfies seven objectives and creates one test
case for the referenced model.

The next procedure simulates the referenced model, sldemo_mdlref counter, with the
test case that the analysis created.

Achieve Missing Coverage

To achieve the missing coverage for the referenced model, sldemo_mdlref counter,
simulate the model by using the test case from the Simulink Design Verifier analysis.

1 Open the referenced model. At the command line, enter:

open_system('sldemo mdlref counter');

2 Create a cvtest object for the simulation and specify recording decision, condition,
and MCDC coverage.

9 Achieving Test Cases for Missing Model Coverage

cvt = cvtest('sldemo mdlref counter');
cvt.settings.decision = 1;
cvt.settings.condition = 1;
cvt.settings.mcdc = 1;

3 Specify recording coverage and set the name of the cvtest object.

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;
runOpts.coverageSetting = cvt;

4 Simulate the model with the cvtest object, cvt, and the test case, as defined in
fileNames.DataFile. Save the recorded coverage data in the workspace variable
covdata missing.

[~, covdata _missing] = sldvruntest('sldemo mdlref counter', fileNames.DataFile, runOpts);
Verify Complete Model Coverage

You saved the coverage data from the simulation of the top-level model,
sldemo_mdlref basic, in the workspace variable covdata original. To create a
report that combines the coverage data from the top-level model with the missing
coverage data from the referenced model, sldemo_mdlref counter, enter the
following command:

cvhtml('Coverage Summary', covdata original, covdata missing);

The report shows that by analyzing the referenced model and using those results to
record coverage, you can achieve 100% decision, condition, and MCDC coverage.

Summary
Model Hierarchy/Complexity: Testl Test 2 Total

D1 C1 MCDC D1 Cl MCDC D1 Cl MCDC
1. sidemo_mdlref counter 325% m 50% m— 0% T5% e 100% e— (% 100% 100% 100%

9-6

Increase Coverage for Referenced Models in a Test Harness

* “Generate Test Harness Model and Record Coverage Data” on page 9-7
* “Generate Test Cases for the Missing Coverage” on page 9-8

* “Update Simulink Design Verifier Analysis Options” on page 9-10

* “View Active Results for Missing Coverage Analysis” on page 9-10

Achieve Missing Coverage in Referenced Model

* “Limitations” on page 9-10

You can incrementally achieve full coverage for a generated test harness model. This
example shows how to first generate a test harness model that does not achieve full
coverage. Next, it shows how to run missing coverage analysis on the test harness model
to generate test cases for 100% coverage.

Note This approach supports only test harness models generated by Simulink Design
Verifier that reference the input model. The Design Verifier app is not available for test
harness models when the test unit is copied from the top model. For more information
see, “Reference input model in generated harness” on page 15-70.

Generate Test Harness Model and Record Coverage Data

To achieve full coverage for the sldemo_mdlref counter model, run a missing
coverage analysis on the Simulink Design Verifier generated harness model.

1 Open the example model:

open_system('sldemo mdlref counter');
2 (Create a harness model for referenced model sldemo _mdlref counter:

[savedHarnessFilePath] = sldvmakeharness('sldemo mdlref counter');

For more information about the harness model, see “Simulink Design Verifier
Harness Models” on page 13-18.

3 Inthe harness model sldemo _mdlref counter harness, the Format parameter
must be Dataset to make the referenced model sldemo mdlref counter and the
harness model sldemo mdlref counter harness have the same parameter
settings. For more information see, “Model Configuration Parameters: Data Import/
Export” (Simulink).

4 Simulate the sldemo _mdlref counter harness model to record the coverage
achieved by the test cases in the harness model. After the simulation, the coverage
report appears. The report indicates that the following coverage is achieved for
sldemo mdlref counter:

9 Achieving Test Cases for Missing Model Coverage

9-8

Summary
Model Hierarchy/Complexity Testl
Decision Condition MCDC
1. zldemo_mdlref counter 3 23% mm 0% 0%

Generate Test Cases for the Missing Coverage

1 Open the harness model:

Execution

6% m—

open_system('sldemo mdlref counter harness');

Relational Boundary

30%%]

To generate test cases for the missing coverage, on the Design Verifier tab, click
Add Missing Coverage. A notification indicates the number of new tests that are

added.

| sldemo_mdiref_counter_harness

(] sldemcu_mdlref_cuunter_ha rness # b
@ (i) Added 1 new tests for missing coverage. E]
Size-Type
IE' Test Case 1 upper /uppEFIdemu_mdlref_cuuntHr ™
= L input input output 4@
_l—- Iawer lower output
W
Inputs Test Unit
I:l
Doc
Tt
Test Case Explanation

5]

|
Ready 96% FixedStepDiscrete

N

previous Test Case 1.

The Signal Builder dialog box shows the Missing coverage test case 1 added to the

Achieve Missing Coverage in Referenced Model

E Signal Builder (sldemo_mdiref_counter_harness/Inputs) EI
File Edit Group Signal Axes Help N
GH| SR oo L0 EFREE| |
Active Group: | |Tezt Casze 1 3) E]
Test Case 1 |
1r Mizsing coverage test case 1
upper
04 H
A 1 1 1 1 1 1 1 1 1]
n'I —
input
0
4]]]]]]]]]]
1 —
lower
0
4 I I I I I I I I I]
0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 02

Hame: | upper ¥ lower
Index: 1 -]
Click to select, Shift+click ta add | upper (#1) [¥Kin ¥Max]
3

all
In the Signal Builder dialog box, click Run all ﬂ The software simulates the
harness model by using all the test cases, collects model coverage information, and
displays a coverage report. The coverage report indicates that the missing coverage
analysis records 100% coverage for sldemo mdlref counter.

9-9

9 Achieving Test Cases for Missing Model Coverage

9-10

Summary

Model Hierarchy/Complexity Test1

Decision Condition MCDC Execution Eelational Boundary

1. zldemo_mdlref counter 3 100% o 1002 o 007 e 007 — 0% —

Update Simulink Design Verifier Analysis Options

1

Open the harness model.

open_system('sldemo mdlref counter harness');

On the Design Verifier tab, click Test Generation Settings. The Configuration
Parameters dialog box for referenced model sldemo mdlref counter opens. You
can set design verifier options for missing coverage analysis. For more information
see, “Options in Configuration Parameters Dialog Box” on page 15-2.

View Active Results for Missing Coverage Analysis

1

Open the referenced model.
open_system('sldemo mdlref counter');

On the Design Verifier tab, in the Review Results section, click Load Earlier
Results. Browse to the previously generated data file and click Open.

To view active results for missing coverage test cases, click Results Summary. The
Results Summary window opens with the missing coverage analysis results. For more
information on active results, see “Review Analysis Results” on page 13-67. The
missing coverage test cases data is stored in a MAT-file that contains a structure
named sldvData. For more information see, “Contents of sldvData Structure” on
page 13-10.

Limitations

1

Missing Coverage analysis is a user interface-based workflow. Command-line
functions are not available for Missing Coverage analysis.

Constraining values for parameters is not supported in the Missing Coverage analysis
workflow. For more information see, “Define Constraint Values for Parameters” on
page 5-5.

See Also

See Also

More About
. “Generate Test Cases for Missing Coverage Data” on page 9-2
. “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13

9-11

9 Achieving Test Cases for Missing Model Coverage

Missing Coverage in Subsystems and Model Blocks

9-12

If your model has a Subsystem block that does not achieve full coverage, you can convert
it to model referenced in a Model block. “Convert Subsystems to Referenced Models”
(Simulink) describes how to convert a subsystem to a referenced model. You can then
follow the steps described in “Achieve Missing Coverage in Referenced Model” on page 9-
3.

You cannot convert some subsystems to Model blocks. To test a subsystem to see if you
can convert it to a Model block, use the
Simulink.SubSystem.convertToModelReference function. If that function cannot
convert the subsystem, an error message describes why the conversion failed.

It is possible that you have a Stateflow chart or a MATLAB Function block that does not
achieve full coverage. You cannot convert Stateflow charts and MATLAB Function blocks
to referenced models.

When you cannot use aModel block, follow the steps described in “Achieve Missing
Coverage in Closed-Loop Simulation Model” on page 9-13.

See Also

More About

. “Achieve Missing Coverage in Referenced Model” on page 9-3
. “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13

Achieve Missing Coverage in Closed-Loop Simulation Model

Achieve Missing Coverage in Closed-Loop Simulation
Model

In this section...

“Record Coverage Data for the Model” on page 9-13

“Find Test Cases for Missing Coverage” on page 9-14

If you have a subsystem or a Stateflow chart that does not achieve 100% coverage, and
you do not want to convert the subsystem or chart to a Model block, follow this example
to achieve full coverage.

The example uses a closed-loop controller model. A closed-loop controller passes
instructions to the controlled system and receives information from the environment as
the control instructions are executed. The controller can adapt and change its
instructions as it receives this information.

The sldvdemo_autotrans model is a closed-loop simulation model. The ShiftLogic
Stateflow chart represents the controller part of this model. Test cases designed in the
ManeuversGUI Signal Builder block drive the closed-loop simulation.

Record Coverage Data for the Model

To simulate the model, recording condition, decision, and MCDC coverage for the
ShiftLogic controller:

1 Open the example model:

sldvdemo_autotrans
2 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.

On the Coverage tab, click Settings.

On the Coverage pane in the Configuration Parameters dialog box. set the following
options:

* Select Enable coverage analysis.

* Select Subsystem and click Select Subsystem.

9-13

9 Achieving Test Cases for Missing Model Coverage

9-14

* In the Subsystem Selection dialog box, select ShiftLogic and click OK.

Under Coverage metrics, select Modified Condition Decision Coverage
(MCDC).

Clear the Other metrics if they are selected.

In the Coverage > Results pane of the Configuration Parameters dialog box, set the

following options:

* In the cvdata object name field, enter covdata original controller to
specify a unique name for the coverage data workspace variable.

* Select Generate report automatically after analysis.

Click OK.

Start the simulation of the sldvdemo _autotrans model to record the coverage
data.

After the simulation, the coverage report opens. The report indicates that the
following coverage is achieved for the ShiftLogic Stateflow chart:

* Decision: 87% (27/31)

* Condition: 67% (8/12)

* MCDC: 33% (2/6) conditions reversed the outcome

The simulation saves the coverage data in the MATLAB workspace variable
covdata original controller, a cvtest object that contains the coverage data.

10 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata original controller);

Find Test Cases for Missing Coverage

To find the missing coverage for the ShiftLogic chart, run a subsystem analysis on that
block. Use this technique to focus your analysis on an individual part of the model.

To achieve 100% coverage for the ShiftLogic controller, run a test-generation analysis
that uses the existing coverage data.

1
2

Right-click the ShiftLogic block and select Design Verifier > Options.

In the Configuration Parameters dialog box, under the Select tree, choose the
Design Verifier node. Under Analysis options in the Mode field, select Test
generation.

Achieve Missing Coverage in Closed-Loop Simulation Model

Under the Design Verifier node, select Test Generation. Under Existing coverage
data, select Ignore objectives satisfied in existing coverage data.

In the Coverage data file field, enter the name of the file containing the coverage
data that you recorded during simulation:

existingcov.cvt

Click Apply to save these settings.

Under the Select tree, click Design Verifier.

On the main Design Verifier pane, click Generate Tests.

The analysis extracts the Stateflow chart into a new model named ShiftLogic0. The
analysis analyzes the new model, ignoring the coverage objectives previously
satisfied and recorded in the existingcov.cvt file.

When the test-generation analysis is complete, in the Simulink Design Verifier log
window, select Simulate tests and produce a model coverage report.

The report indicates that the following coverage is achieved for the ShiftLogic chart
in simulation with the test cases generated by Simulink Design Verifier:

* Decision: 84% (26/31)
* Condition: 83% (10/12)
« MCDC: 67% (4/6) conditions reversed the outcome

The Simulink Design Verifier report lists six test cases for the extracted model that
satisfy the objectives not covered in the existingcov. cvt file.

The Simulink Design Verifier report indicates that two coverage objectives in the
Stateflow chart ShiftLogic are proven unsatisfiable. The implicit event tick is never
false because the ShiftLogic chart is updated at every time step. The analysis
cannot satisfy condition or MCDC coverage for either instance of the temporal event
after (TWAIT, tick).

after(TWAIT, tick) is semantically equivalent to

Event == tick && temporalCount(tick) >= TWAIT
If you move after(TWAIT, tick) into the condition, asin

[after(TWAIT, tick) && speed < down th]

9-15

9 Achieving Test Cases for Missing Model Coverage

Simulink Design Verifier determines that tick is always true, so it only tests the
temporalCount(tick) >= TWAIT part of after (TWAIT, tick). The analysis is
able to find test objectives that satisfy condition and MCDC coverage for

after (TWAIT, tick).

See Also

More About

. “Generate Test Cases for Missing Coverage Data” on page 9-2
. “Achieve Missing Coverage in Referenced Model” on page 9-3

9-16

Modified Condition and Decision Coverage in Simulink Design Verifier

Modified Condition and Decision Coverage in Simulink
Design Verifier

Depending on the settings you apply for Simulink Coverage coverage recording, there can
be a difference between the definition of modified condition and decision (MCDC)
coverage used for model coverage analysis in Simulink Coverage and that used for test
case generation analysis in Simulink Design Verifier.

MCDC Definitions for Simulink Coverage and Simulink Design
Verifier

Simulink Design Verifier always uses the masking MCDC definition for test case
generation. By default, Simulink Coverage also uses the masking MCDC definition when
recording coverage. However, if you set the CovMcdcMode model configuration
parameter to 'UniqueCause’, Simulink Coverage instead uses the unique-cause MCDC
definition when recording coverage. For information on the differences between the
masking MCDC definition and the unique-cause MCDC definition, see “Modified Condition
and Decision Coverage (MCDC) Definitions in Simulink Coverage” (Simulink Coverage).

Setting the CovMcdcMode model configuration parameter to 'UniqueCause’ can result
in differences between MCDC reporting in Simulink Coverage and test generation in
Simulink Design Verifier. An example of this difference can be seen in analysis results for
logical expressions containing a mixture of AND and OR operators, as in this Stateflow
transition.

Ny

&

[(A&&B) [C]

e
L

)
fout = 0;} fout=1;}
e

C}“ .

.

9-17

9 Achieving Test Cases for Missing Model Coverage

9-18

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate
the condition on the Stateflow transition, shown in the following table.

A B C (A&& B) || C
1 F X F F
2 F X T T
3 T F F F
4 T F T T
5 T T X T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing
that a change in that variable alone changes the evaluation of the entire expression. In
this example, MCDC can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In
both of those cases, the value of the expression changed because the value of C changed,
while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each pair
contains one evaluation where C and out are true and one evaluation where C and out
are false. To satisfy MCDC for C, Simulink Design Verifier test generation analysis accepts
any pair containing one evaluation of true values and one evaluation of false values for C
and out. In this example, Simulink Design Verifier test generation analysis accepts not
only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3. Simulink Coverage model
coverage analysis using the unique-cause MCDC definition is satisfied only by pair 1, 2 or
by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input A is
constrained to be the same value as C, as in this model, only a subset of condition
evaluations are possible.

Modified Condition and Decision Coverage in Simulink Design Verifier

N
1} {2
In
2} - B D-‘} {-Lt—h@
In2 t Cutl
|
M
Chart

This subset of condition evaluations for the Stateflow transition is shown in the following
table.

A B C (A&& B) || C
F X F F
T F T T

5 T T X T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible.
As a result, unique-cause MCDC for C can no longer be satisfied in Simulink Coverage
model coverage analysis. Since pair 1, 4 is still possible, however, Simulink Design
Verifier test generation analysis reports that MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and OR
operators causes this difference between results from Simulink Coverage set to unique-
cause MCDC analysis and Simulink Design Verifier. The defaultCovMcdcMode model
configuration parameter value of 'Masking' does not cause this discrepancy. However, if
you require the use of unique-cause MCDC analysis in Simulink Coverage, you can
minimize this effect by using the IndividualObjectives test suite optimization for test
generation analysis in Simulink Design Verifier For more information, see the Tip section
of “Test suite optimization” on page 15-42.

9-19

9 Achieving Test Cases for Missing Model Coverage

See Also

More About
. “MCDC” on page 7-36

9-20

Verifying Model Components

* “What Is Component Verification?” on page 10-2
* “Functions for Component Verification” on page 10-4
* “Verify a Component for Code Generation” on page 10-6

10 Verifying Model Components

What Is Component Verification?

10-2

In this section...

“Component Verification Approaches” on page 10-2
“Simulink Design Verifier Tools for Component Verification” on page 10-2

Component Verification Approaches

Component verification lets you test a design component in your model using either of the
following approaches:

Within the context of the model that contains the component — Using
systematic simulation of closed-loop controllers requires that you verify components
within a control system model. Doing so lets you test the control algorithms with your
model. This approach is called system analysis.

As standalone components — For a high level of confidence in the component
algorithm, verify the component in isolation from the rest of the system. This approach
is called component analysis.

Verifying standalone components provides three advantages:

* You can use analysis to focus on portions of the design that you cannot test because
of the physical limitations of the system being controlled.

* You can use this approach for open-loop simulations to test the plant model without
feedback control.

* You can use this approach when the model is unavailable or when you need to
simulate a control system model in accelerated mode for performance reasons.

Simulink Design Verifier Tools for Component Verification

By isolating the component to verify, and using tools that Simulink Design Verifier
provides, you create test cases that let you expand the scope of the testing for large
models. This expanded testing helps you accomplish the following:

Achieve 100% model coverage — If certain model components do not record 100%
coverage, the top-level model cannot achieve 100% coverage. By verifying these
components individually, you can create test cases that fully specify the component
interface, allowing the component to record 100% coverage.

What Is Component Verification?

* Debug the component — To verify that each model component satisfies the specified
design requirements, you can create test cases that verify that specific components
perform as designed.

* Test the robustness of the component — To verify that a component handles
unexpected inputs and calculations properly, you can create test cases that generate
data. Then, test the error-handling capabilities in the component.

10-3

10 Verifying Model Components

Functions for Component Verification

10-4

The Simulink Design Verifier software provides several functions that facilitate the tasks
associated with component verification.

Function

Task

sldvlogsignals

Simulate a Simulink model and log input signals to a Model
block in the model. If you modify the test cases in the Signal
Builder harness model, use this approach for logging input
signals to the harness model itself.

sldvmakeharness

Create a harness model for a component, using logged input
signals if specified, or using the default signals.

For more information about harness models, see “Simulink
Design Verifier Harness Models” on page 13-18.

sldvmergeharness

Merge test cases from several harness models into a single
harness model.

sldvextract

Extract an atomic subsystem or atomic subchart into a new
model.

sldvruntest

Simulate a model, executing the specified test cases to
record model coverage and outport values.

sldvruncgvtest

Invoke the Code Generation Verification (CGV) API, and
execute the specified test cases on the generated code for
the model.

Note To execute a model in different modes of execution,
use the CGV API to verify the numerical equivalence of
results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded
Coder).

Component verification functions do not support the following Simulink features:

* Variable-step solvers for sldvruntest

* Component interfaces that contain:

* Variable-size signals

Functions for Component Verification

* Multiword fixed-point data types larger than 128 bits

10-5

10 Verifying Model Components

Verify a Component for Code Generation

In this section...

“About the Example Model” on page 10-6

“Prepare the Component for Verification” on page 10-8

“Record Coverage for the Component” on page 10-9

“Use Simulink Design Verifier Software to Record Additional Coverage” on page 10-10
“Combine the Harness Models” on page 10-12

“Execute the Component in Simulation Mode” on page 10-13

“Execute the Component in Software-in-the-Loop (SIL) Mode” on page 10-13

About the Example Model

This example uses the slvnvdemo powerwindow model to show how to verify a
component in the context of the model that contains that component. As you work
through this example, you use the Simulink Design Verifier component verification
functions to create test cases and measure coverage for a referenced model. In addition,
you can execute the referenced model in both simulation mode and Software-in-the-Loop
(SIL) mode using the Code Generation Verification (CGV) API.

Note You must have the following product licenses to run this example:

o Stateflow
 Embedded Coder
* Simulink Coder

The component that you verify is a Model block named control. This component resides
inside the power window control system subsystem in the top level of the
slvnvdemo powerwindow model. The power window control system subsystem is
shown below.

10-6

Verify a Component for Code Generation

reset
position ———— 1
obstacle position
(2 p——» neutral endstop A
driver_neutral detect_obstacle_endstop
3 up
i neutral_up_down -
driv er_up T ﬁ 'endstcup slynvdemo_powerwindow_controller |
__ driver_down maoveldp 1)
=1 obstacle move_up
- validate_driver driver
moveDown
—b.—bﬁaﬁ passenger move down
neutral Ak 4 |
passenger_neutral contral
up
passenger up neutral_up_down f|—
down

validate_passenger

The control Model block references the slvnvdemo powerwindow controller
model.

Simulink Coverage
Power Window Controller

~

¥

endstop

D,
endstop mowvell —Il--'I
2} ubstﬂcI&D ’ movellp

mav ellp

obstacle
driver t Q
driv er owveDown C2)
mnweann -

,.E_ﬂﬁ'rf**'i"ﬁl'i‘r mavelown

1]

¥

@
¥

31

8
¥

passenger
control

10-7

10 Verifying Model Components

The referenced model contains a Stateflow chart control, which implements the logic
for the power window controller.

safe

[ETIIEt (BRI emergency Down
entry:
movellp =0;

(driverNedtral
| entry:

passengerneutral

movelp = 0; o . ;o
moveDown = 0, [passenger|3]] - [passengerZI~—. moveDown = 1;
—2
[op] [endstopl
J
passengerDown
entry: moveDown = 1; passengerUp —5553:;@;

entry: movelp = 1;
exit. movellp =0,

.

[driver3]] 2 . 7 ¥
2 lendstop]] [|enostop:

exit: moveDown = 0;

arter(s, tick)
[passenger1]]

| A

(driverDown ¥
entry: maoveDown = 1;

iniCriverDown
exit. moveDown = 00;

After(5 tick)
[driver[1]} J\{

)2

driverlp
entry: movellp = 1;
exit movelp =10;

M

2-('j |—_ [driver[1]]

autoDriverlp
—/

river1]] [driver[1]]
[driver[2]]

1
/ C
et)
[arveral

{,;

Prepare the Component for Verification

To verify the referenced model slvnvdemo powerwindow controller, create a
harness model that contains the input signals that simulate the controller in the plant
model:

1 Open the slvnvdemo powerwindow example model and the referenced model:

open_system('slvnvdemo powerwindow');
open_system('slvnvdemo powerwindow controller');

2 Open the power window control system subsystem in the example model.
The Model block named control in the power window control system

subsystem references the component that you verify during this example,
slvnvdemo powerwindow controller.

10-8

Verify a Component for Code Generation

6

Simulate the Model block that references the
slvnvdemo powerwindow controller model and log the input signals to the
Model block:

loggedSignalsPlant = sldvlogsignals(

‘slvnvdemo powerwindow/power window control system/control');
sldvlogsignals stores the logged signals in LoggedSignalsPlant.
Generate a harness model with the logged signals:

harnessModelFilePath = sldvmakeharness(
'slvnvdemo powerwindow controller', loggedSignalsPlant);

sldvmakeharness creates and opens a harness model named
slvnvdemo powerwindow controller harness. The Signal Builder block
contains one test case containing the logged signals.

For more information about harness models, see “Simulink Design Verifier Harness
Models” on page 13-18.

For use later in this example, save the name of the harness model:

[~, harnessModel] = fileparts(harnessModelFilePath);
Leave all windows open for the next part of this example.

Next, you will record coverage for the slvnvdemo_powerwindow_controller model.

Record Coverage for the Component

Model coverage is a measure of how thoroughly a test case tests a model, and the
percentage of pathways that a test case exercises. To record coverage for the
slvnvdemo powerwindow_controller model:

1

Create a default options object, required by the sldvruntest function:

runOpts = sldvruntestopts;
Specify to simulate the model, and record coverage:

runOpts.coverageEnabled = true;
Simulate the referenced model and record coverage:

[~, covDataFromLoggedSignals] = sldvruntest(
"slvnvdemo powerwindow controller', loggedSignalsPlant, runOpts);

10-9

10 Verifying Model Components

10-10

4 Display the HTML coverage report:
cvhtml('Coverage with Test Cases', covDataFromLoggedSignals);
The slvnvdemo powerwindow controller model achieved:

* Decision coverage: 40%
* Condition coverage: 35%
* MCDC coverage: 10%

For more information about decision coverage, condition coverage, and MCDC
coverage, see “Types of Model Coverage” (Simulink Coverage).

Because you did not achieve 100% coverage for the
slvnvdemo_powerwindow controller model, next, you will analyze the model to
record additional coverage and create additional test cases.

Use Simulink Design Verifier Software to Record Additional
Coverage

You can use Simulink Design Verifier to analyze the

slvnvdemo powerwindow controller model and collect coverage. You can specify
that the analysis ignore any previously satisfied objectives and record additional
coverage.

To record additional coverage for the model:
1 Save the coverage data that you recorded for the logged signals in a file:

cvsave('existingCovFromLoggedSignal', covDataFromLoggedSignals);
2 Create a default options object for the analysis:

opts = sldvoptions;

3 Specify that the analysis generate test cases to record decision, condition, and
modified condition/decision coverage:

opts.ModelCoverageObjectives = 'MCDC';

4 Specify that the analysis ignore objectives that you satisfied when you logged the
signals to the Model block:

opts.IgnoreCovSatisfied = 'on';

Verify a Component for Code Generation

10

Specify the name of the file that contains the satisfied objectives data:

opts.CoverageDataFile = 'existingCovFromLoggedSignal.cvt';
Specify that the analysis not display unsatisfiable objectives in the Diagnostic Viewer:

opts.DisplayUnsatisfiableObjectives = 'off"';

For this example, the focus is on satisfying as many objectives as possible.
Specify that the analysis create long test cases that satisfy several objectives:

opts.TestSuiteOptimization = 'LongTestcases';

Creating a smaller number of test cases each of which satisfies multiple test
objectives saves time when you execute the generated code in the next section.

Specify to create a harness model that references the component using a Model
block:

opts.saveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';

The harness model that you created from the logged signals in “Prepare the
Component for Verification” on page 10-8 uses a Model block that references the
slvnvdemo powerwindow controller model. The harness model that the analysis
creates must also use a Model block that references

slvnvdemo powerwindow controller. You can append the test case data to the
first harness model, creating a single test suite.

Analyze the model using Simulink Design Verifier:

[status, fileNames] = sldvrun('slvnvdemo powerwindow controller"',
opts, true);

The analysis creates and opens a harness model
slvnvdemo powerwindow controller harness. The Signal Builder block
contains one long test case that satisfies 74 test objectives.

You can combine this test case with the test case that you created in “Prepare the
Component for Verification” on page 10-8, to record additional coverage for the
slvnvdemo powerwindow controller model.

Save the name of the new harness model and open it:

[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel) ;

10-11

10 Verifying Model Components

10-12

Next, you will combine the two harness models to create a single test suite.

Combine the Harness Models

You created two harness models when you:

Logged the signals to the control Model block that references the
slvnvdemo powerwindow controller model.

Analyzed the slvnvdemo powerwindow controller model.

If you combine the test cases in both harness models, you can record coverage that gets
you closer to achieving 100% coverage:

1

Combine the harness models by appending the most recent test cases to the test
cases for the logged signals:

sldvmergeharness(harnessModel, newHarnessModel);

The Signal Builder block in the slvnvdemo powerwindow controller harness
model now contains both test cases.

Log the signals to the harness model:

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);

Use the combined test cases to record coverage for the
slvnvdemo powerwindow controller harness model. First, configure the
options object for sldvruntest:

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;
Simulate the model and record and display the coverage data:
[~, covDataFromMergedSignals] = sldvruntest(
"slvnvdemo powerwindow controller', loggedSignalsMergedHarness,

runOpts);
cvhtml('Coverage with Merged Test Cases', covDataFromMergedSignals);

The slvnvdemo powerwindow controller model now achieves:

* Decision coverage: 100%
* Condition coverage: 80%

Verify a Component for Code Generation

* MCDC coverage: 60%

Execute the Component in Simulation Mode

To verify that the generated code for the model produces the same results as simulating
the model, use the Code Generation Verification (CGV) API methods.

Note To execute a model in different modes of execution, use the CGV API to verify the
numerical equivalence of results. For more information about the CGV API, see
“Programmatic Code Generation Verification” (Embedded Coder).

When you perform this procedure, the simulation compiles and executes the model code
using both test cases.

1 Create a default options object for sldvruncgvtest:

runcgvopts = sldvruntestopts('cgv');
2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';

3 Execute the slvnv_powerwindow controller model using the two test cases and
the runcgvopts object:

cgvSim = sldvruncgvtest('slvnvdemo powerwindow controller',
loggedSignalsMergedHarness, runcgvopts);

These steps save the results in the workspace variable cgvSim.

Next, you will execute the same model with the same test cases in Software-in-the-Loop
(SIL) mode and compare the results from both simulations.

For more information about Normal simulation mode, see “Execute the Model”
(Embedded Coder).

Execute the Component in Software-in-the-Loop (SIL) Mode

When you execute a model in Software-in-the-Loop (SIL) mode, the simulation compiles
and executes the generated code on your host computer.

10-13

10 Verifying Model Components

10-14

In this section, you execute the slvnvdemo powerwindow controller model in SIL
mode and compare the results to the previous section, when you executed the model in
simulation mode.

1

Specify to execute the model in SIL mode:

runcgvopts.cgvConn = 'sil’';
Execute the slvnv_powerwindow controller model using the two test cases and
the runcgvopts object:

cgvSil = sldvruncgvtest('slvnvdemo powerwindow controller',
loggedSignalsMergedHarness, runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode execution.

Compare the results in cgvSil to the results in cgvSim, created from the simulation
mode execution. Use the compare method to compare the results from the two
simulations:

for i=1:1length(loggedSignalsMergedHarness.TestCases)
simout = cgvSim.getOutputData(i);
silout = cgvSil.getOutputData(i);
[matchNames, ~, mismatchNames, ~] = ...
cgv.CGV.compare(simout, silout);
end

Display the results of the comparison in the MATLAB Command Window:

fprintf(['\nTest Case(%d):%d Signals match, %d Signals mismatch\r'],...
i, length(matchNames), length(mismatchNames));

As expected, the results of the two simulations match.

For more information about Software-in-the-Loop (SIL) simulations, see “What Are SIL
and PIL Simulations?” (Embedded Coder).

Considering Specified Minimum and
Maximum Values for Inputs During
Analysis

* “Minimum and Maximum Input Constraints” on page 11-2
» “Specify Input Ranges on Simulink and Stateflow Elements” on page 11-4
* “Specify Input Ranges in sldvData Fields” on page 11-11

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Minimum and Maximum Input Constraints

11-2

In this section...

“Simulink Design Verifier Support for Specified Input Minimum and Maximum Values”
on page 11-2

“Limitations of Simulink Design Verifier Support for Specified Minimum and Maximum
Values” on page 11-3

When creating a model, you can specify minimum and maximum values on input ports to
mimic environmental constraints as part of your design. The Simulink Design Verifier
analysis can automatically consider these values as constraints for:

* Design error detection
* Test case generation
* Property proving

Specifying minimum and maximum input values is similar to using the Test Condition
block to constrain signals for test case generation or the Proof Assumption block to
constrain signals for property proving. The Test Condition and Proof Assumption blocks
capture the analysis constraints. The Simulink Design Verifier software can also consider
the design constraints captured in the Inport block minimum and maximum parameters
as constraints for analysis.

Note For more information about signal values, see “Signal Values” (Simulink).

Simulink Design Verifier Support for Specified Input Minimum
and Maximum Values

By default, Simulink Design Verifier considers any minimum and maximum input values
specified for Inport blocks in your model. To enable this capability:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for
the mode settings, click Settings.

2 In the Configuration Parameters dialog box, on the Design Verifier pane, select the
Use specified input minimum and maximum values parameter.

3 After the analysis completes, to view the design minimum and maximum constraints
for your model, click Generate detailed analysis reports.

See Also

The constraints are listed in the Analysis Information chapter of the Simulink
Design Verifier report.

Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values

Simulink Design Verifier support for specified minimum and maximum values has the
following limitations:

* The analysis considers specified minimum and maximum values on root-level Inport
blocks only. The analysis ignores minimum and maximum values specified on other
Simulink blocks.

See Also

More About

. “Signal Ranges” (Simulink)

11-3

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Specify Input Ranges on Simulink and Stateflow
Elements

When you specify input range constraints on Simulink and Stateflow elements, Simulink
Design Verifier considers these constraints during analysis.

In this section...

“Specify Input Ranges for Inport Blocks” on page 11-4

“Specify Input Ranges for Simulink.Signal Objects” on page 11-5
“Specify Input Ranges for Stateflow Data Objects” on page 11-6
“Specify Input Ranges for Subsystems” on page 11-7

“Specify Input Ranges for Global Data Stores” on page 11-8
“Specify Input Ranges for Bus Elements” on page 11-9

Specify Input Ranges for Inport Blocks

After you specify the output minimum and maximum values on Inport blocks (Simulink),
Simulink Design Verifier analysis uses the minimum and maximum values as constraints.

The following example model restricts the signals from two Inport blocks:

* Inputl block: Minimum: 1, Maximum: 5
» Input2 block: Minimum: -1, Maximum: 1

Inputi i
A Compare
[1. 5 To Zero >
R D
- Out1
Logical
B p|==0 Operator
Input2
41 Compare
e To Zeroi

When you use Simulink Design Verifier, to analyze this model, the analysis produces these
results:

11-4

Specify Input Ranges on Simulink and Stateflow Elements

* The output from Inputl is never less than 0, therefore the first input to the Logical
Operator block is never false. The objective that the first input to the Logical
Operator equals false is unsatisfiable.

* The Logical Operator block cannot achieve 100% modified condition/decision coverage
(MCDC) coverage because the condition where the first input is false never occurs.

The detailed analysis report shows the values you use as constraints for Inputl and

Input2.

Specify Input Ranges for Simulink.Signal Objects

Using the Model Explorer, in the model workspace, you can specify minimum and
maximum values (Simulink) on Simulink.Signal objects associated with input signals.

The following example model uses the Simulink.Signal objects associated with the
input signals a and b to restrict the signal values:

* Signal a: Minimum: 1, Maximum: 5

* Signal b: Minimum: -1, Maximum: 1

=0
Inp:-Lrt“I_5i|;;|-E‘=l >
. @ R (1)
Out1 s
.-Eb %=1 4| =4

When you analyze this model, the results are the same as if you specified the minimum
and maximum values on the input ports.

Specifying Signal Ranges on Inport Blocks and Signals
If you specify ranges on the Inport blocks and on the signals, the analysis considers the
smallest range for the values. For example, if you specify a range of 4. .12 on an input

port and a range of 1. .8 on the signal from the input port, the analysis considers the
range 4. .8.

11-5

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-6

Specify Input Ranges for Stateflow Data Objects

Using the Model Explorer, you can specify ranges on data objects that are directly
connected to the root-level input ports (Simulink) for a Stateflow chart.

In the following example model, the Stateflow chart named Chart has a data object, x,
whose range you specified as 0 < x < 10. In this chart, x must be greater than 15 to
trigger the transition from low to high.

xhasrange 0< x< 10

The value of x ranges from 0 through 10, therefore the transition condition [x > 15] is
never true. The transition from low to high never occurs. Because the high state is
never entered, the transition condition [x < 15] is never tested, and the transition from
high to low never occurs. The chart is always in the lLow state.

When you analyze this model, these objectives are proven unsatisfiable:

* The high state is never entered.
* The transition condition [x > 15] is always false, never true.
* The condition [x < 15] is never tested, so it is never true or false.

The analysis report indicates the values that you use as constraints for x: [0, 10].

Specify Input Ranges on Simulink and Stateflow Elements

Specify Input Ranges for Subsystems

The Simulink Design Verifier software considers specified input minimum and maximum
values as constraints only at the top level of a model. You can specify minimum and
maximum values on Input ports (Simulink) on subsystems, but when you analyze the top-
level model, the software ignores those values.

When you perform the subsystem analysis, the software considers specified minimum and
maximum values on the input ports of the subsystem.

For example, consider the following model and its subsystem.

(C——»{ £ Fpfssi ssouf—»(1)
Input3 - Out2
o Saturation

-20 to 20

Subsystem

In Subsystem, the specified minimum and maximum values for input port SSIn are -10
and 10, respectively. The lower and upper limits for the Saturation block are -15 and 15,
respectively.

Cor—HFr—>C
SEh o SEout
L 10, 10] sirstion

-1510 18

If you right-click Subsystem in the top-level model and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the specified minimum and
maximum values as constraints on the SSIn port.

Constraints

Design Min Max Constraints

Name Design Min Max Constraint
SSIn [-10, 10]

11-7

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-8

The analysis identifies two unsatisfiable objectives:

* input > lower limit F: The input is always greater than the lower limit on the
Saturation block (-15).

* input >= upper limit T: The input is never greater than or equal to the upper limit on
the Saturation block (15).

If you analyze the model that contains Subsystem, the analysis does not consider the
values specified on the input port SSIn in the subsystem. The analysis considers only the
root-level input ports at the respective level of the hierarchy for analysis.

Specify Input Ranges for Global Data Stores

A data store is a repository to which you can write data and from which you can read
data, without having to connect an input or output signal directly to the data store. You
create a data store by using a Data Store Memory block or a Simulink.Signal object.
You can specify minimum and maximum values (Simulink) for any data store.

During subsystem analysis, Simulink Design Verifier creates an input port to mimic the
execution context for a global data store. For more information, see “Extract Subsystems
for Analysis” on page 14-15. If the data store has specified minimum and maximum
values, those values are assigned as minimum and maximum values on the new input
port. Simulink Design Verifier analysis considers the input minimum and maximum values
as subsystem-level analysis constraints.

In the following example model, data store A has a minimum value of 0 and a maximum
value of 10.

. out |———» ()
Cata Siore Gt
Memary Subsystem

The atomic subsystem reads values from the data store and checks to see if the input is
less than 0. The Compare To Zero block outputs 1 if the input is less than 0, and outputs 0
if the input is greater than or equal to 0. The Test Objective block checks to see if the
output is ever 1.

Specify Input Ranges on Simulink and Stateflow Elements

i

<0 —@

Cutl

1=
¥

Data Store Compare
Read ToZero

In the top-level model, if you right-click Subsystem and select Design Verifier >
Generate Tests for Subsystem, the analysis considers the constraints for data store A to
be [0, 10].

The analysis does not satisfy the objective specified in the Test Objective block. The input
is always greater than or equal to 0, therefore the output from the Compare To Zero block
is always 0.

Specify Input Ranges for Bus Elements

When you define a bus, you can specify minimum and maximum values for the elements in
the bus (Simulink). Simulink Design Verifier considers these minimum and maximum
values when analyzing subsystems and models that use the bus as an input signal.

Consider a subsystem that inputs a bus of three fields, each with a defined minimum and
maximum. To view this subsystem, at the command line, enter:

open_system(fullfile(docroot, 'toolbox', 'sldv', 'examples’, ...
'sldvBusMinMaxExample'));

il e »

Subsystem

11-9

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Bus Element Bus Element Minimum Bus Element Maximum
vehicleSpeed 0 125

throttle 0 100

engineSpeed 0 7600

The subsystem has test objectives that confirm that each element does not exceed a
constant. The vehicleSpeed signal is limited to a maximum value lower than the test

objective.
(1 e A ——————— »(1)
In1 : Outl

== 13§

< yehleSpeed> HiLim VehSpd

== 498
< throttle>
HiLim Thr
true
<enginefpesd=
2= 7200
HiLim EngSpd

Set the current folder to a writable folder. In the top-level mode, right-click Subsystem
and select Design Verifier > Generate Tests for Subsystem. The Condition Objective
for testing vehicleSpeed > 135 is not satisfiable due to the maximum specification on

the vehicleSpeed element.

11-10

Specify Input Ranges in sldvData Fields

Specify Input Ranges in sldvData Fields

When you analyze a model, Simulink Design Verifier generates a data file when it
completes its analysis. The data file is a MAT-file that contains an sldvData structure.
The sldvData structure stores all the data that the software gathers and produces
during the analysis. You can use the data file to customize your own analysis or to
generate a custom report.

If your model contains specified minimum and maximum values on the input ports, the
sldvData structure contains information about those values. For example, after
analyzing the ex_minmax_on_inports model in “Specify Input Ranges for Inport
Blocks” on page 11-4, the data file contains the following values:

* For the Inputl block:
sldvData.Constraints.DesignMinMax (1) .value{1l}.low
ans =

1
sldvData.Constraints.DesignMinMax (1) .value{1l}.high
ans =

5
» For the Input2 block:

sldvData.Constraints.DesignMinMax(2) .value{1l}.low
ans =

-1
sldvData.Constraints.DesignMinMax(2) .value{1l}.high

ans =

11-11

Proving Properties of a Model

* “What Is Property Proving?” on page 12-2

» “Workflow for Proving Model Properties” on page 12-4

* “Prove Properties in a Model” on page 12-5

* “Prove System-Level Properties Using Verification Model” on page 12-25

* “Prove Properties in a Subsystem” on page 12-30

* “Model Requirements” on page 12-31

* “Property Proving with an Invalid Property” on page 12-37

» “Property Proving with Multiple Properties” on page 12-38

* “Property Proving with an Assumption Block” on page 12-39

* “Property Proving Workflow for Cruise Control” on page 12-40

* “Property Proving Workflow for Fixed-Point Cruise Control” on page 12-42
* “Property Proving Using MATLAB Function Block” on page 12-44

» “Property Proving Using MATLAB Truth Table Block” on page 12-46

* “Property Proving Workflow for Thrust Reverser” on page 12-48

* “Debounce Temporal Properties” on page 12-50

+ “Power Window Controller Temporal Properties” on page 12-54

» “Debug Property Proving Violations by Using Model Slicer” on page 12-65
* “Design and Verify Properties in a Model” on page 12-73

12 Proving Properties of a Model

What Is Property Proving?

12-2

A property is a requirement that you model in Simulink or Stateflow, or using MATLAB
Function blocks. A property can be a simple requirement, such as a signal in your model
that must attain a particular value or range of values during simulation.

A property can also be a requirement on the model that involves a number of input and
output signals modeled as a logical expression that needs to be proved.

The Simulink Design Verifier software performs a formal analysis of your model to prove
or disprove the specified properties. After completing the analysis, the software offers
several ways for you to review the results:

* Highlighted on the model

* A harness model with test cases

* A detailed HTML report

Proof Blocks

The Simulink Design Verifier software provides two blocks so you can specify property
proofs in your Simulink models:

* Proof Objective — Define the values of a signal to prove
* Proof Assumption — Constrain the values of a signal during a proof

Note Blocks from the Model Verification library in the Simulink software behave like
Proof Objective blocks during Simulink Design Verifier proofs. You can use Assertion
blocks and other Model Verification blocks to specify properties of your model. For more
information about these blocks, see “Model Verification” (Simulink).

Proof Functions

The Simulink Design Verifier software provides two Stateflow and MATLAB for code
generation functions to specify property proving for a Simulink model or Stateflow chart:

* sldv.prove — Specifies a proof objective
* sldv.assume — Specifies a proof assumption

What Is Property Proving?

These functions:
» Identify mathematical relationships for proving properties in a form that can be more
natural than using block parameters

» Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

* Provide access to the power of MATLAB.
* Support separation of verification and model design.

For an example of how to use these proof functions, see the sldv.prove reference page.

Note Simulink Design Verifier blocks and functions are saved with a model. If you open
the model on a MATLAB installation that does not have a Simulink Design Verifier license,
you can see the blocks and functions, but they do not produce results.

12-3

12 Proving Properties of a Model

Workflow for Proving Model Properties

12-4

To prove properties of your design model, use the following workflow:

1

5

Determine the verification objectives for your design model, e.g., based on your
requirements specifications.

Instrument your design model to specify proof objectives and proof assumptions.
» For simple properties, instrument your model with blocks or MATLAB functions
that specify the proof objectives.

» For system-level properties, construct a verification model that contains a Model
block that references the design model and define the properties on the design
model interface using the same inputs and outputs.

Define analysis constraints using the Proof Assumption block or sldv.assume. These
constraints apply to all enabled proof objectives.

Note The proof assumptions are applied to all enabled proof objectives. Make sure
that you do not specify any contradictory assumptions because that might invalidate
the entire analysis.

Specify options that control how Simulink Design Verifier proves the properties of
your model.

Execute the Simulink Design Verifier analysis and review the results.

For an exercise that demonstrates this workflow, see “Prove Properties in a Model” on
page 12-5.

See Also

More About

“Property Proving Workflow for Cruise Control” on page 12-40
“Property Proving Workflow for Fixed-Point Cruise Control” on page 12-42
“Property Proving Workflow for Thrust Reverser” on page 12-48

Prove Properties in a Model

Prove Properties in a Model

In this section...

“About This Example” on page 12-5

“Construct Example Model” on page 12-6

“Check Compatibility of Example Model” on page 12-7
“Instrument Example Model” on page 12-8
“Configure Property-Proving Options” on page 12-9
“Analyze Example Model” on page 12-10

“Review Analysis Results” on page 12-10
“Customize Example Proof” on page 12-19
“Reanalyze Example Model” on page 12-20
“Review Results of Second Analysis” on page 12-20
“Analyze Contradictory Models” on page 12-23
“Prove Properties in a Large Model” on page 12-24

About This Example

The following sections describe a Simulink model, for which you prove a property that you
specify using a Proof Objective block. This example demonstrates the property-proving

capabilities of Simulink Design Verifier.

In this example, you perform the following tasks.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 12-6

2 Verify that your model is “Check Compatibility of Example Model” on
compatible with Simulink Design |page 12-7
Verifier.

3 Add a Proof Objective block to “Instrument Example Model” on page 12-
your model to prepare for its 8
proof.

12-5

12 Proving Properties of a Model

Task |Description See...

4 Configure Simulink Design “Configure Property-Proving Options” on
Verifier to prove properties. page 12-9

5 Prove a property of your model. |“Analyze Example Model” on page 12-10
Review the analysis results. “Review Analysis Results” on page 12-10

Add proof assumptions to specify |“Customize Example Proof” on page 12-19
analysis constraints.

8 Prove a property of the “Reanalyze Example Model” on page 12-20
customized model and interpret
the results.

Construct Example Model

Construct a Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into your empty model window:
* From the Sources library, an Inport block to initiate the input signal whose value
Simulink Design Verifier controls

* From the Logic and Bit Operations library, a Compare To Zero block to provide
simple logic

* From the Sinks library, an Outport block to receive the output signal
3 Connect these blocks such so your model appears similar to the following model:

In1 Out1
Compare

To Zero

4 On the Modeling tab, click Model Settings.

On the Configuration Parameters dialog box, in the Solver pane, in the Solver
selection:

* Set the Type option to Fixed-step.

12-6

Prove Properties in a Model

* Set the Solver option to Discrete (no continuous states).

The Simulink Design Verifier can analyze only models that use a fixed-step solver.
Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save your model with the name ex property proving example basic.

Check Compatibility of Example Model

Every time Simulink Design Verifier software analyzes a model, before the analysis
begins, the software performs a compatibility check. If your model is not compatible, the
software cannot analyze it.

You can also make sure you model is compatible with Simulink Design Verifier before you
start the analysis:

Open the ex_property proving example basic model.
2 On the Design Verifier tab, click Check Compatibility.

The Simulink Design Verifier software displays the log window, which states whether
or not your model is compatible.

The model you just created is compatible.

12-7

12 Proving Properties of a Model

12-8

Simulink Design Verifier Results Summary: ex_property_proving_example_basic >

27-Jun-2017 16:24:40

Checking compatibility for test generation: model
'ex_property_proving_example_basic’

Compiling model...done

Building model representation...done

27-Jun-2017 16:24:42
'ex_property_proving_example_basic' is compatible for test generation with
Simulink Design Verifier,

Save Log Generate Tests Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model
contains at least one object that Simulink Design Verifier does not support. You can
analyze a partially compatible model, but, by default, unsupported objects are stubbed
out. The results of the analysis may be incomplete. For detailed information about
automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-8.

Instrument Example Model

Prepare your example model so that you can prove its properties with Simulink Design
Verifier. Specifically, instrument the model by adding and configuring a Proof Objective
block:

1 In the MATLAB Command Window, enter sldvlib.

The Simulink Design Verifier library appears.

Prove Properties in a Model

Open the Objectives and Constraints sublibrary.

Copy the Proof Objective block to your model and insert it between the Compare To
Zero and Outport blocks.

In your model, double-click the Proof Objective block.

The Proof Objective block parameters dialog box opens.
In the Values box, enter 1.

The Simulink Design Verifier software will attempt to prove that the signal output by
the Compare To Zero block always attains this value for any signals that it receives.

Click OK to apply your changes and close the Proof Objective block parameters
dialog box.

CO—* =0 — 0D
In1 Ot
Compare
To Zero

Save your model and keep it open.

Configure Property-Proving Options

Configure Simulink Design Verifier to prove properties of the
ex_property proving example basic model that you instrumented:

B W N =

Open the ex_property proving example basic model.

On the Design Verifier tab, in the Mode section, select Property Proving.

Click Property Proving Settings.

Click OK to apply your changes and close the Configuration Parameters dialog box.

Note On the Property Proving pane, you can optionally specify values for other
parameters that control how Simulink Design Verifier proves properties of your
model. For more information, see “Design Verifier Pane: Property Proving” on page
15-59.

Save the ex property proving example basic model.

12-9

12 Proving Properties of a Model

12-10

Analyze Example Model

To analyze the ex _property proving example basic model, on the Design Verifier
tab, click Prove Properties. Simulink Design Verifier begins a property-proving analysis.

During the analysis, the log window shows the progress of the analysis. It displays
information such as the number of objectives processed and which objectives were
satisfied or falsified.

To terminate the analysis at any time, in the log window, click Stop.

Review Analysis Results

When the analysis is complete, the log window displays the following options for
reviewing the results:

* Highlight the analysis results on the model

* Generate a detailed HTML analysis report

* Create a harness model with test cases

» Simulate the test cases created by the model and produce a model coverage report

You can also view the Simulink Design Verifier data file. For detailed information about
the data file, see “Simulink Design Verifier Data Files” on page 13-10.

The following sections describe how you can review the analysis results:

* “Review Results on Model” on page 12-10

* “Review Detailed Analysis Report” on page 12-13

+ “Review Harness Model” on page 12-15

* “Simulate Model with Counterexample” on page 12-17
* “Review Analysis Results” on page 12-18

Review Results on Model

You can review the analysis results at a glance by viewing the blocks that are highlighted
in the model window. The highlighting can have four colors:

* Green — The analysis proved all the proof objectives valid.

Prove Properties in a Model

* Red — The analysis disproved a proof objective and generated a counterexample that
falsified that objective.

* Orange — The analysis disproved a proof objective, but it could not generate a
counterexample or the proof objective remained undecided. This result occurs due to:

A proof objective on a signal whose value the software cannot control, for example,
a Constant block

A proof objective that depends on nonlinear computation
A proof objective that creates an arithmetic error, such as division by zero

Automatic stubbing being enabled, and the analysis encountering an unsupported
block whose operation it does not understand but that the analysis requires to
generate the counterexample

The analysis timing out
Limitations of the analysis engine

* Gray — The model object was not part of the analysis.

Highlight the analysis results on the example model:

1

In the Results Summary window for the ex property proving example basic
analysis, click Highlight analysis results on model.

O <o}—

In1 Out1
Compare

To Zero

The Proof Objective block is highlighted in red, which indicates that a proof objective
was falsified with a counterexample.

The Simulink Design Verifier Results window appears.

12-11

12 Proving Properties of a Model

12-12

PL Results: ex_property_proving_example_basic — O >

Property proving completed normally.
1/1 objective is falsified.

Results:

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

As you click objects in the model, this window changes to display detailed analysis
results for that object.

PL Results: ex_property_proving_example_basic — O *
- A
Back to summary

ex_property_proving_example_basic/Proof Objective
Objective: T ERROR - View counterexample

Tip By default, the Simulink Design Verifier Results window is always the topmost

visible window. To allow the window to move behind other window, click & and clear
Always on top.

Click the highlighted Proof Objective block.

The Simulink Design Verifier Results window indicates that the proof objective that
the output signal from the Compare to Zero was not 1 was disproved with a
counterexample.

Prove Properties in a Model

Review Detailed Analysis Report

To create a detailed HTML analysis report:

1

4

In the Simulink Design Verifier Results Summary window, click Generate detailed
analysis report.

The HTML report opens in a browser window.

The report includes the following Table of Contents. Click a hyperlink to navigate to
particular section in the report.

Table of Contents

1. Summary
2. Analysis Information

3. Proof Ohjectives Status
4. Properties

In the Table of Contents, click Summary.

Chapter 1. Summary

Analysis Information

Model: ex_property_proving_example basic
Mode: Property proving

Status: Completed normally

Analysis Time: 11s

The Summary provides an overview of the analysis results, and it indicates that
Simulink Design Verifier identified a counterexample that falsifies an objective in
your model.

In the Table of Contents, click Proof Objectives Status.

12-13

12

Proving Properties of a Model

12-14

Objectives Falsified with Counterexamples

Analysis
[Tvpe Model Item Description Time Counterexample
(sec)
1 PI?Gf. __|Proof Objective Objective: T 12 1
objective

The Objectives Falsified with Counterexamples table lists the proof objectives that
Simulink Design Verifier disproved using a counterexample that it generated. You can
locate the objective in your model window by clicking Proof Objective; the
software highlights the corresponding Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table, under the Counterexample
column, click 1.

Proof Objective

Summary

Model Item: Proof Objective
Property: Objective: T
Status: Falsified

Counterexample

Time|
Step |1
Inl |1

This section displays information about proof objective 1 and provides details about
the counterexample that Simulink Design Verifier generated to disprove that
objective. In this counterexample, a signal value of 99 falsifies the objective that you

Prove Properties in a Model

specified using the Proof Objective block. That is, 99 is not less than or equal to 0,
which causes the Compare To Zero block to return 0 (false) instead of 1 (true).

Review Harness Model

Create a harness model with counterexamples that falsify the proof objectives in your
model:

1 In the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex _property proving example basic harness.

Size Type
Counterexample 1
% In Int outif——#("1)
(KR Out1
Inputs Test Unit {copied from ex_property_proving_e:ample)
=
DoC
Text

Test Case Explanation

The harness model contains the following items:

» Signal Builder block named Inputs — A group of signals that falsify proof
objectives.

* Subsystem block named Test Unit — A copy of your model.

* DocBlock named Test Case Explanation — A textual description of the
counterexamples that the analysis generates.

* A Size-Type block — A subsystem that transmits signals from the Inputs block to
the Test Unit block. This block verifies that the size and data type of the signals
are consistent with the Test Unit block.

2 Double-click the Inputs block.

12-15

12 Proving Properties of a Model

u Signal Builder (ex_property_proving_example_harness/Inputs) E@
File Edit Group Signal Axes Help ¥
SH AB@B oo | —TLEEREE 0 on | R
Active Group: | Counterexample 1 vi @, | - =
F e R R bR LR LR
||-|1 1 1 1 1 1 : 1 1 1 [
e
1.6_ """""""""" b D TT=TTTT====" F=-=======5========== 'i """"" b L l
L e e e S
42 e] S A SO I S S
1 ¢
0.8--------- oo it S RRRRREEEE booooooee oo Ao Rt R RRRRREE oo .
DB [- m - m et o
0_4__________.__________4__________;__________L__________.__________4: __
'}-2_ _________ mTT T T T T i T-~~"T"T° =77 r=-=-=-====7"7 (i 'i __________ b r=-==-======"7 mT Tttt T A
0 | | | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (sec)
Left Point Right Point Inl (shown) >
Harme: |In1 T T
Index: 1 vi ¥: Y:
ok In1 (#1) [¥Min YMax]

12-16

The input signal 1 causes the output of the Compare to Zero block to be 0. This
counterexample violates the proof objective that specifies that the output of the
Compare to Zero block be 1.

Prove Properties in a Model

Simulate Model with Counterexample

Simulate the harness model to observe the counterexample that falsifies the proof
objective in your model:

Open the ex_property proving example basic model.
On the Simulation tab, click Library Browser.

From the Sinks library, copy a Scope block into your harness model window. The
Scope block allows you to see the value of the signal output by the Compare To Zero
block in your model.

4 In your harness model window, connect the output signal of the Test Unit subsystem
to the Scope block.

Size Type
Counterexample 1
[] Ot
Inputs Test Unit {copied from ex_property_proving_examgle)
o
DoC
Text
Test Case Explanation o |:|
Scope

5 To simulate your harness model, on the Simulation tab, click Run.

The Simulink software simulates the harness model.

6 In your harness model window, double-click the Scope block to open its display
window.

12-17

12 Proving Properties of a Model

12-18

B scope = e
AN LI

The Scope block displays the value of the signal output by the Compare To Zero block
in your model. In this example, the Compare To Zero block returns 0 (false)
throughout the simulation, which falsifies the proof objective that the output of the
Compare to Zero block be 1 (true). The counterexample that the Signal Builder block
supplies falsifies the proof objective.

Review Analysis Results

As long as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis results in the Results Summary window.

On the Design Verifier tab, in the Review Results section, click Results Summary. The
Results Summary window opens displaying the results of the latest Simulink Design
Verifier analysis.

For any Simulink Design Verifier analysis, from the Results Summary window, you can
perform the following tasks.

Prove Properties in a Model

Task

For more information

Highlight the analysis results on the model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report.

“Simulink Design Verifier Reports” on page
13-38

Create the harness model, or if the harness
model already exists, open it.

If no counterexamples were created during
the analysis, this option is not available.

“Simulink Design Verifier Harness Models”
on page 13-18

View the data file.

“Simulink Design Verifier Data Files” on
page 13-10

View the log file.

“Simulink Design Verifier Log Files” on
page 13-66

After you close your model, you can no longer view the analysis results.

Customize Example Proof

Modify the simple Simulink model whose proof objective Simulink Design Verifier
disproved in the previous task. Specifically, customize the proof by adding and

configuring a Proof Assumption block:

1 Inthe MATLAB Command Window, type sldvlib.

The Simulink Design Verifier library opens.
Open the Objectives and Constraints sublibrary.
Copy the Proof Assumption block to your model.

In your model window, insert the Proof Assumption block between the Inport and

Compare To Zero blocks.

5 In your model, double-click the Proof Assumption block to access its attributes.

The Proof Assumption block parameter dialog box opens.

6 In the Values box, enter [-1, 0]. When proving properties of this model, Simulink
Design Verifier constrains the signal values entering the Compare To Zero block to
the specified range. If the input to the Compare to Zero block is always within this
range, the output of the Compare to Zero block will always be 1.

12-19

12 Proving Properties of a Model

12-20

7 Click Apply and then OK to apply your changes and close the Proof Assumption
block parameter dialog box.

1.0 1

-0~ |-+

In1 Out1
Compare

To Zero

8 Save the ex property proving example basic model and keep it open.

Reanalyze Example Model

Analyze the model that you modified to see how the Proof Assumption block affects the
property-proving analysis.

Open the ex property proving example basic model. On the Design Verifier tab,
click Prove Properties.

When the analysis is complete, the log window displays the options. There is no option to

create a harness model, because the analysis satisfied all proof objectives in your model,
so there are no counterexamples.

Review Results of Second Analysis

Review the results of the second analysis:

* “Review Results on the Model” on page 12-20
» “Review Analysis Report” on page 12-21

Review Results on the Model

Highlight the model to see the analysis results:

1 C(Click Highlight analysis results on model.

The Proof Objective is now highlighted in green.

Prove Properties in a Model

2

[-1. 0]

OO < -0+
Im Cutl
Compare
To Zero

Click the Proof Objective block.

The Simulink Design Verifier Results window shows that the proof objective that

states that the signal be 1 is valid.

'D} Results: ex_property_proving_sxample_with_pa_block —

a

Pt

[

Back to summary
ex_property_proving_example_with_pa_block/Proof Objective

Objective: T VALID

Review Analysis Report

Review the analysis results in the detailed report:

1
2

Click Generate detailed analysis report.
In the Table of Contents, click Summary.

12-21

12 Proving Properties of a Model

Chapter 1. Summary

Analysis Information

Model:

Mode:

Status:
Analysis Time:

Objectives Status

Number of Objectives: 1
Objectives Valid: 1

ex_property_proving_example_with_pa_block
Property proving
Completed normally

11s

The Summary chapter indicates that Simulink Design Verifier proved a proof

objective in the model.

3 The Constraints section lists the analysis constraint you specified in the Proof

Assumption block.

Constraints

Analysis Constraints

Name Analysis Constraint
Assumption -1,0
ASSUMPLIon

4 Scroll back to the top of the browser window. In the Table of Contents, click Proof

Objectives Status.

12-22

Prove Properties in a Model

Objectives Valid

Analysis
|Type Model Item Description Time |Counterexample
(sec)
Proof . . _
1 .. |Proof Objective |Objective: T 3 n'a
objective

The Objectives Proven Valid table lists the proof objectives that Simulink Design
Verifier proved to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser window

and in the Table of Contents, click Properties.

Proof Objective

Summary

Model Item: Proof Objective

Property: Objective: T
Status: Valid

The Proof Objective summary indicates that Simulink Design Verifier proved an
objective that you specified in your model. The Proof Assumption block restricts the
domain of the input signals to the interval [-1, 0]. Therefore, the software proves that
this interval does not contain values that are greater than zero, thereby satisfying the

proof objective.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and it cannot
analyze the model. You can have a contradiction if your model has Proof Assumption

12-23

12 Proving Properties of a Model

12-24

blocks with incorrect parameters. For example, an assumption could state that a signal
must be between 0 and 5 when the signal is constant 10.

If the software detects a contradiction, all previous results are invalidated and the
software reports that all the properties are falsified.

Prove Properties in a Large Model

A thorough proof of your model requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

“Prove Properties in Large Models” on page 14-25 gives detailed information about
strategies you can use to improve the performance of a property-proving analysis of a
large model.

See Also

More About

. “Property Proving with an Invalid Property” on page 12-37

. “Property Proving with Multiple Properties” on page 12-38

. “Property Proving with an Assumption Block” on page 12-39

Prove System-Level Properties Using Verification Model

Prove System-Level Properties Using Verification Model

In this section...

“When to Use a Verification Model for Property Proving” on page 12-25
“About this Example” on page 12-25

“Understand the Verification Model” on page 12-25

“Prove the Properties of the Design Model” on page 12-26

“Fix the Verification Model” on page 12-27

When to Use a Verification Model for Property Proving

If your model has system-wide properties that affect the behavior of the model, you might
want to prove the properties without changing the design model. To do this, you create a
verification model that includes:

* Model block that references the design model

* One or more verification subsystems that define the properties and any required
constraints

About this Example

The design model sldvdemo sbr design models the logic for a seat belt reminder light.
If the ignition is turned on, the seat belts are unfastened, and the car exceeds a certain
speed, the seat belt reminder light turns on.

The sldvdemo sbr verification modelis a verification model that defines some
constraints and verifies the properties in the sldvdemo sbr design model. The Model
block in the verification model references the design model, so that the verification logic
exists only in the verification model.

The sldvdemo sbr verification model contains a property that is falsified, because
a constraint is disabled. In the sldvdemo sbl verification fixed model, the
constraint is enabled and all the properties are proven valid.

Understand the Verification Model

Take these steps to understand how the verification model works:

12-25

12 Proving Properties of a Model

12-26

Open the verification model:

sldvdemo_sbr verification

The Design Model block is a Model block that references sldvdemo sbr design.
The SBR Stateflow chart in the design model assumes that the KEY input is initially 0.

Open the Safety Properties subsystem that specifies the properties of the design
model that you want to prove.

This subsystem contains a MATLAB Function block called MATLAB Property. The
code in this block specifies the property that the seat belt reminder should be on
when the ignition is on, the seat belt is not fastened, and the speed is less than 15:

Close the Safety Properties subsystem.
Open the Input Constraints subsystem.

This subsystem defines the following constraints:

* The key can have three positions: 0, 1, 2
* The speed is constrained to fall between 10 and 30.

* The key must start at 0 and can only change by one increment at a time. For
example, the key can change from 0 to 1 or 1 to 2, but not from 0 to 2. In this
verification model, this constraint is not enabled.

Close the Input Constraints subsystem, but keep the sldvdemo sbr verification
model open.

Prove the Properties of the Design Model

Analyze the sldvdemo_sbr verification model to prove the properties:

1

In the sldvdemo_sbr verification model window, to start the analysis, double-
click the Run button to start the analysis.

When the analysis completes, the Simulink Design Verifier log window indicates that
one objective is falsified - needs simulation. For more information, see “Objectives
Falsified - Needs Simulation” on page 13-55.

To see which objective was falsified, click Highlight analysis results on model.

The Safety Properties subsystem is highlighted in orange.

matlab: sldvdemo_sbr_verification

Prove System-Level Properties Using Verification Model

3 Open the Safety Properties subsystem and click the MATLAB Property block.
The Simulink Design Verifier Results window indicates that the statement
sldv.prove(implies(activeCond,SeatBeltIcon))
was false during at least one time step.

'D'i Results: sldvdemo_sbr_verification — O >
~ B#A
Back to summary
sldvdemo_sbr_wverification/Safety Properties/MATLAB
Property
sldv. prove(implies{activ - View counterexample
eCond,SeatBeltIcon))
4

Click View counterexample to see the signal values that violated this property.

The Signal Builder block opens with the counterexample. The KEY input was initially
2, which is invalid.

To validate the property specified in the Safety Properties subsystem, you have to make
sure that the initial value of KEY is 0.

Fix the Verification Model

The Input Constraints subsystem in the verification model contained three constraints.

The third constraint, which requires that the initial value of KEY be 0, and that KEY can
only change in increments of 1, is disabled.

12-27

12 Proving Properties of a Model

fint& 0}, int3(1), it 802)}

fi{[10 30], fecdt{0,16,2))

[Speed] -

inta{-1 1)

| =

¥

[Key] -

To see how this property is validated when you enable the third constraint:
1 Inthe sldvdemo _sbr verification model, click Open Fixed Model.

The sldvdemo _sbr verification_ fixed verification model opens.

2 Open the Input Constraints subsystem.
This third constraint is now enabled so that KEY has an initial value of 0 and changes
in increments of 1.

3 Close the Input Constraints subsystem.

In the sldvdemo sbr verification fixed model, to start the analysis, double-
click the Run block.

The analysis proves the validity of the property.

12-28

See Also

See Also
More About

. “Property Proving Using MATLAB Function Block” on page 12-44
. “Property Proving Using MATLAB Truth Table Block” on page 12-46

12-29

12 Proving Properties of a Model

Prove Properties in a Subsystem

12-30

If you have a large model, you can prove the properties of a subsystem in the model and
review the analyses in smaller, manageable reports. The workflow for proving properties
in a subsystem is:

Open the model that contains the subsystem.

Make the subsystem atomic.

Run Simulink Design Verifier using the Prove Properties of Subsystem option.

A W N -

Review the results.

The tutorial in “Generate Test Cases for a Subsystem” on page 7-23 explains how to
generate test cases for the Controller subsystem in the Cruise Control Test Generation
model. The steps for proving properties are similar to those for generating test cases,
except that you select the Prove Properties of Subsystem option instead of the
Generate Tests for Subsystem option.

Model Requirements

Model Requirements

The Simulink Design Verifier block library includes a sublibrary Example Properties. The
Example Properties sublibrary includes:

» “Basic Properties” on page 12-31 — Four examples that demonstrate how to prove
basic properties.

* “Temporal Properties” on page 12-33 — Four examples that demonstrate how to
define temporal properties on Boolean signals

The workflow for using these examples in your model is:

Copy these examples into your Verification Subsystem block.
Adapt them, if required, for the specific properties that you want to prove.

3 Run the Simulink Design Verifier analysis to prove that the assertions in these
examples never fail.

4 [f the assertion fails, the software creates a counterexample that causes the assertion
to fail and then generates a harness model.

5 On the harness model, execute the counterexample to confirm that the assertion fails
with that counterexample.

Basic Properties
To view the Basic Properties examples:

1 Open the Simulink Design Verifier block library. Type:

sldvlib
Double-click the Examples sublibrary.
3 Double-click the Basic Properties block that contains the examples.

The sections that follow describe each example in the Block Properties sublibrary in
detail.

Conditions that Trigger a Result
The Simulink Design Verifier Implies block allows you to test for conditions that trigger a

result. This example specifies that if condition A is true, result B must always be true.

12-31

12 Proving Properties of a Model

: A
condition PR @
3
res ult Assertion
Implies

Implies operation describes conditions that should trigger a result.

Increasing or Decreasing Signals
The two examples in this section specify that a signal is either:

* Always increasing or staying constant
» Always decreasing or staying constant

Y

D o 1 >
inoressing z Assertion2
delayi e
-
= [
1 : g @
{8} - -
decreasing z Assertiond
delayd gtel

Increasing and decreasing operations describe signals that
should increase or decrease.

Exclusivity Operation

This example describes four conditions that should not be true at the same time.

12-32

Model Requirements

g

1

=1

3

8
¥

I
¥

¥
&

g
g
|

Assertiond

3
iy
=]
5
i

a

g
A

Exclusivity operation descrines conditions that should
ney er be true at same time.

Conditions with One True Element

This example specifies that only one of the four input signals can be true.

==

3

B
h
v

]
¥

¥
]

Ass ertion
Mutual exclusivity operation describes conditions that should
have exactly one true element.

Temporal Properties

To view the Temporal Properties examples:

12-33

12 Proving Properties of a Model

12-34

1 Open the Simulink Design Verifier block library. Type:

sldvlib
Double-click the Temporal Properties sublibrary.
Double-click the Temporal Properties block that contains the examples.

The sections that follow describe each example in the Temporal Properties sublibrary in
detail.

Synchronize the Output with the Input

When the input Inl equals ACTIVE, the input In2 is set to INACTIVE after five time
steps.

Whenewer In1 becomes ACTNE, then In2 shall become INACTNE after a delay of 5 steps.

a——]

4 L—
D = n Out

I > g G e .
5 A

ACTIVE H A=—pBL

In2 L

INACTIVE F

Make a Signal Inactive After a Delay

In this example, after five consecutive time steps where the SENSOR HIGH input is true,
the CMD signal becomes true. CMD is true as long as SENSOR HIGH is true, unless the
block is reset by the MANUAL RESET signal.

Model Requirements

After Sensor is detected at HIGH for 5 consecutive steps, Cmd becomes and stay s true for
the remaining duraticn of the Sensor wvalue HIGH unless manual reset is detected.

j

BENE{:;{ HIGH Ot
| . rue
l—b-

Y

MAMUAL RESET A==B

D
CMD

Extend a True Signal

In this example, after the input becomes true, the output becomes true for the number of
time steps specified in the Detector block, in this case, 5. The input remains true for 5

time steps as well.

Whenewer In becomes true, it shall stay true for the following 5 steps as well.

1
L5 } -_| L Dl.t-l ’

In A==E

—

Test the Input Against a Specified Threshold

h

When the input In3 equals ON and the input In4 is less than the constant THRESHOLD,
In3 is set to OFF within five time steps.

12-35

12 Proving Properties of a Model

Whenever In3 is ON and Ind is less that THRESHOLD, then In3 shall become OFF within 5§ steps.

Ind
= [_|L_
THRESHOLD g - AND L lin Qut
s W ‘|_> - .
ON > __ N om|—
g ok I
In3 |—>
OFF
See Also
More About
. “Debounce Temporal Properties” on page 12-50
. “Power Window Controller Temporal Properties” on page 12-54

12-36

Property Proving with an Invalid Property

Property Proving with an Invalid Property

This example shows how to find an invalid property using Simulink Design Verifier
property proving analysis.

raw

Simulink Design Verifier Property Proving
with an Invalid Property

debounce

¥

'\

h 4

(1

debounced

output

N

P input
Verify True Output

Run
(double-click)

Thiz example shows how to find an invalid property using Simulink Design Verifier
property proving analysis. It attempts to prove that when the sum of the current and
six previous input values is greater than &, the output equals 2.

In this casze, the property is invalid because a single large input value (e.g. 255)
causes the sum to be greater than 6. Simulink Design Verifier produces a
counterexample that demonstrates the violation.

View Options
{double-click)

Copyright 2006-2012 The Math\Works, Inc.

12-37

12 Proving Properties of a Model

Property Proving with Multiple Properties
This example shows how to perform a property proving analysis with multiple properties.

Simulink Design Verifier Property Proving
with Multiple Properties

2 b—ﬂq

(1 3 —4—+in [EJ[E] out I 1)
raw debounced
* ,F

¥

debounce

™ cutput

™ input
Verify Output

This example shows how to perform a property proving analysis with multiple
properties. The model is configured for the analysis to attempt to prove that:

- When the current and six previous input values are true, the output will be true.

- When the current and six previous input values are false, the output will be false.

Run View Options
(double-click) (double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options

Copyright 2006-201% The MathWarks, Inc.

12-38

Property Proving with an Assumption Block

Property Proving with an Assumption Block

This example shows how to perform a Simulink Design Verifier property proof using a
Proof Assumption block.

raw

Simulink Design Verifier

debounce

¥

¥

Property Proving with an Assumption Block

'\

(1D

debounced

output

N

v

input
Verify True Output

Run
(double-click)

This example shows how to perform a Simulink Design Verifier property proof using a
Proof Assumption block. It attempts to prove that when the sum of the current and six
previous input values is greater than &, the output equals 2. The model includes a
Proof Assumption block that constrains the input to be 0 or 1.

Simulink Design Verifier searches for violations of 20 or fewer time steps. It is unable
to find a violation because the property is valid under the assumption.

View Options
{double-click)

Copyright 2006-2012 The MathWorks, Inc.

12-39

12 Proving Properties of a Model

Property Proving Workflow for Cruise Control

This example shows how to find a property violation using Simulink Design Verifier
property proving analysis.

12-40

Property Proving Workflow for Cruise Control

Simulink Design Verifier Property Proving Workflow for Cruise Control

Part 1: Finding Property Viclations

sldvdemo_cruise_control_defective

throt 1)

1= InBus

InputData |
npu aaé target w2)

Design Model

Throttle_Out

Safety Properties

This example shows how to find a property viclation using Simulink Design Verifier property proving analysis.
This verification model contains a model reference to the actual design model and the verification subsystem
containing the safety properties. The design model references a cruise control system. It consists of a Pl

Conftroller that computes the throttle cutput based on the difference between the actual and the target speed.

This model is configured for Simulink Design Yerifier to return a counterexample for the property defined.

Run View Options Open Fixed Model
(double-click) (double-click) (double-click)

Open the Fixed Model

Copyright 2006-2013 The MathWorks, Inc.

12-41

12 Proving Properties of a Model

Property Proving Workflow for Fixed-Point Cruise
Control

This example shows how to prove properties in a fixed-point cruise control algorithm.

12-42

Property Proving Workflow for Fixed-Point Cruise Control

Simulink Design Verifier Property Proving Workflow for
Fixed-Point Cruise Control with
Block Replacements

Part 1: Finding Property Viclations

sldvdemo_cruise_control_fop_defective sfinl6 Enid
()
. InputBusFzp Thrattle
" - InpuiBusFp InBus
" ufix18_Ena
InputData tanget - »
H Target
Design Model
[InBus
Input Assumptions

This example shows how to prove properties in a fixed-point cruise control algorithm. It references the
design model using model reference =0 that the original design model is unchanged. A block
replacement rule specifies the property that checks if an overflow is possible. The verification
subsystem specifies an assumption on the range of the speed input during property proving.

Thiz model configures Simulink Design Verifier to apply a block replacement to the Sum block that
feeds the outport of the fixed-point Pl Controller in the referenced model and return a counterexample
that demonsitrates an overflow.

Sum Replacement Rule Sum Replacement Contents
(double-click) (double-click)
Open theSum Replacement Rule Qpen the Sum Replacement Contents
Run View Options Open Fixed Model
{double-click) (deuble-click) (deuble-click)

Open the Fixed Model

Copyright 2006-2013 The MathWaorks, Inc.

12-43

12 Proving Properties of a Model

Property Proving Using MATLAB Function Block

This example shows how to verify the seat belt reminder design model referenced in the
top block above.

12-44

Property Proving Using MATLAB Function Block

Simulink Design Verifier Property Proving Using MATLAB Function Block
Part 1: Finding property violations

gldvdemo_sbr_design

boolean
== Inputs SeatBeltlcon —»(1)
Inputs ‘SeatBeltlcon

Design Model

P SeatBealtlcon

Inputs

Safety Properties

Inputs

Input Constraints

This example shows how to verify the seat belt reminder design model. The Safety Properties block
below it contains a property specified in MATLAE that indicates when the icon should be active.
Simulink Design Verifier analyzes the design model and safety property to prove correctness or to
identify counterexamples.

In this model, the property is violated because the design implicitly assumes that the KEY input
starts at 0 and changes by increments of 1.

Run View Options Open Fixed Model
(double-click) (double-click) (double-click)

Open Fixed Model

Copyright 2006-2012 The MathWorks, Inc.

12-45

12 Proving Properties of a Model

Property Proving Using MATLAB Truth Table Block

This example shows how to verify the seat belt reminder design model referenced in the
top block above.

12-46

Property Proving Using MATLAB Truth Table Block

Simulink Design Verifier Property Proving Using MATLAB Truth Table Block
Part 1: Finding property violations

sldvdemo_sbr_design

boolean
H Inputs SeatBeltlcon —(1)

‘SeatBeltlcon

Design Model

] SeatBeltlcon

Inputs

Safety Properties

Inputs

Input Constraints

This example shows how to verify the seat belt reminder design model referenced in the top block above.
The Safety Properties block below it contains a property specified in MATLAB Truth Table that indicates
when the SeatBeltlcon output should be active. Simulink Design Verifier analyzes the design model and
safety property to prove correctness or to

identify counterexamples.

In this model. the property is violated because the design implicitly assumes that the KEY input
starts at 0 and changes by increments of 1.

Run View Options Open Fixed Model
(double-click) (double-click) (double-click)

Open Fixed Model

Copyright 2013 The MathWorks, Inc.

12-47

12 Proving Properties of a Model

Property Proving Workflow for Thrust Reverser

This example shows how to verify safety properties in a thrust reverser design model.

12-48

Property Proving Workflow for Thrust Reverser

Simulink Design Verifier Property Proving Workflow for Thrust Reverser
Part 1; Finding property viclations

sldvdemo_thrustrvs_defective

deploy 1)
deploy
asWam e 2)
asWarn
. —— sensorData tWarn = 3)
sensorData tWarn
wowWarn .-;@
wowWarn
wasWarn = 5)
i wssWarn
Design Model

deploy

sensorData

Safety Properties

This example shows how to verify safety properties in a thrust reverser design model. The Properties block
below it contains four safety properties. Simulink Design Verifier analyzes the design model and safety
properties to prove correctness or to identify counterexamples.

The use of model referencing eliminates the need to add verification content to the design model, allowing

the verification content to exist independently from the design.

Run View Options Open Fixed Model
(double-click) (double-click) (double-click)

Open Fixed Model

Copyright 2006-2012 The MathWorks, Inc.

12-49

12 Proving Properties of a Model

Debounce Temporal Properties

This example shows how to model temporal system requirements for property proving
and test case generation using Simulink® Design Verifier™ Temporal Operator blocks.

Temporal Operators

The Simulink® Design Verifier™ library provides three basic temporal operator blocks
can be used to model temporal properties. The intent of the temporal operators is to
support the specification of temporal requirements, such that the modeled property has a
closer co-relation to the actual textual requirement. These blocks are low-level building
blocks for constructing more complex temporal properties.

Debounce Model and Requirements

Consider a debounce logic that debounces between values of 0 and 1 based on the input
holding a value for a fixed number of time steps.

The debounce functionality is captured in the containing Stateflow® chart.

open_system('sldvdemo debounce to')
open_system('sldvdemo debounce to/debounce')

ait

. _ e
entry: opt=-=0:)
[in==0] ™N

L "

S —2 | ['”:'4]
[after(5,tick)] "—ﬁ’- entry: ofit = 1;

|

Consider two requirements of the debounce model that you would like to verify.
Requirement 1:
Whenever the input equals 1 for more than 6 steps, the output shall be equal to 2.

Requirement 2:

12-50

Debounce Temporal Properties

Whenever the input becomes 0 for more than 5 steps after the output was 2, the output
shall equal 1 as long as the input stays at 0.

Property Specification

For specifying Requirement 1, you first represent the constraint that input equals 1
for more than 6 steps. This can be captured by the Detector block from the Temporal
Operator Blocks Library. On detecting that the input value is 1 for 7 (or more than 6) time
steps, you want to check that the output equals 2 as long as input stays equal to 1 after
the detection. Use the "Synchronized" option of the Detector block followed by an Implies
block to capture this.

open_system('sldvdemo _debounce to/Verify True Outputl"')

—— o Ot
input] L
Synchronized Output - A
7 time steps for input detection A===B » @
—* B
implies

output

2 |—>
|Whenever input value stays 1 for more than & steps then the output shall be 2. '

Multiple temporal operator blocks can be combined to construct more complex temporal
properties. Consider Requirement 2.

open_system('sldvdemo_debounce to/Verify True Output2')

12-51

12 Proving Properties of a Model

output

12-52

b I 1
— I Ciut
2 I d
Infinite extension
B AND
—|
20— s L
input == P 11 L Ot "
A==»B »
oy s Y

Synchronized Cutput
G time steps for input detection

Whenever the input becomes O for more than 5 steps after the output was 2,
the output shall equal 1 as long as the input stays at 0.

For illustration, this requirement is broken down roughly into three pieces of interest:

1

After the output was 2: This is an enabling condition for your property. While
checking the rest of the constraints, you want to know if this condition was true at
some point in the past. This type of an enabling condition is typically followed by an
Extender (either "Finite" or "Infinite") that, in combination with other constraints,
might form the first input to your implication.

The input becomes 0 for more than 5 steps and check something as long as
input stays 0: For the same reason as the first property, you use a Detector with
"Synchronized" output ("Time steps for input detection" = 6).

The output shall equal 1: This is the condition that you want to verify whenever the
first two constraints hold. This is captured through a logical Implies block. Note that
you cannot use Within Implies block here.

Debounce Temporal Properties

Property Proving

Once the temporal requirements have been modeled, you can perform property proving
on these using Simulink Design Verifier.

Clean Up
To complete the example, close all the opened models.

close system('sldvdemo TOBlocks',0);
close system('sldvdemo debounce to',0);

12-53

12 Proving Properties of a Model

Power Window Controller Temporal Properties

This example shows how to model temporal system requirements in a power window
controller model for property proving and test case generation using Simulink® Design
Verifier™ Temporal Operator blocks.

Temporal Operators

The Simulink® Design Verifier™ library provides three basic temporal operator blocks
which can be used to model temporal properties. The intent of the temporal operators is
to support the specification of temporal requirements, such that the modeled property has
a closer correlation to the actual textual requirement. These blocks are low-level building
blocks for constructing more complex temporal properties.

Power Window Controller

The power window controller responds to the driver and passenger commands by giving
the commands for moving the window up or down. It also responds to an obstacle and to
reaching the end of the window frame in either direction.

Consider the following two requirements for the power window controller:
Requirement 1 (Obstacle Response)

Whenever an obstacle is detected, the controller shall give the down command for 1
second.

Requirement 2 (AutoDown feature)

If the driver presses the down button for less than 1 second, the controller keeps giving
the down command until the end has been reached or the driver presses the up button.

%Model of the power window controller
open_system('sldvdemo powerwindowController")
open_system('sldvdemo powerwindowController/control")

12-54

Power Window Controller Temporal Properties

(safe
Ifclri\-'erl\.leu'r.l'*al passengerneutral) [endstop | after(5 tick)] ™
_| entry: entry:
[2 L movelp = 0; movelp = 0; — —

D S(Ef
R [passenger3]] o

passengerDown
entry: moveDown = 1;
exit: moveDown = 0]

~ after(5 tick)

"LL _;\

[passenger[1]]

[endstop] | \

maveDown = 0;

[passenger[1]]

[passenger[1]]

[passengerf2]]

. [passenger[Z]]\
[endstop]

|

T

iniPassengerUp

— after(5 tick)

"El_assengerUp
entry: moveldp = 1;
exit: movelp = 0;

[passenger{1]]

autoPassengerDown

-

-/ [passenger3]]
p T 7 A
[drive r[3]]?[[endstop] : ? 7 | e
(driverDown Y / (l [endstop]
exit: moveDown = 0; driverlUp —
after(3,tick) axit: movelp = 0;
s [driver[1]] — after(5 tick)
_ / = [driver[1]] 2 (e
Flie=i G} [__-\J [driver{1]]
autoDriverDown DriverDown H - y -
[driver{3]] an\rerUp | IautoDrlverUp I
[driver[2]]
A S . .

Property Specification

emergencyDown
entry:
movelp = 0;

mowveDown = 1;

[ocbstacle]

The power window verification system is the top-level model that contains a model
reference to the power window controller model specifying the controller behavior and

the modeled requirements.

%Model of the top-level verification system
open_system('sldvdemo powerwindow vs')

12-55

12 Proving

Properties of a Model

Power Window Controller Temporal Property Specification

DownCmd

@bﬂ'ﬂﬂﬂn , Dsldv‘dem_pm&lemindnuﬂnmmllar
boolean P
upD boolean up
L2) 1 d O + 1]
boolean e HP up
downDh
(Ehcu:-laan "
. LY
= boolean B |_|
YT hoolean -
L4) P downP
boolean .
downF* boolean dowm .
L5) ¥ obstacl d + w2)
boolean ° e e down
obstacle,
:ﬁ boolean .
boolean Srrlatop
endstop
| D_dowm
D _up
—— EndSiop
oo aar Act_DownCmd
boolaan
Verification Subsystem
] cbstacle
boolaa
. EndSiop
po aar Act_DownCme
boolean
Verification Subsystema2
| D_dowm
D up
] obstacle
boolaa
r——. EndSiop
bnnlaar Act_DownCmd
ooleg|
1 Act_UpCmd
boolean
Verification Subsystem3
. ohstacle
ooleg
#+ EndSiop
boolean

12-56

Global Assumptions

Copyright 1920-2010 The MathWaorks, Inc.

Power Window Controller Temporal Properties

Global Assumptions: The power window controller is an open system. This makes the
environment controlled inputs, obstacle and endstop (end of the window frame) to occur
freely. To constrain the environment, add two global assumptions for your controller
model.

1) The obstacle and the endstop inputs never become true at the same time.

2) The obstacle does not occur multiple times within the following 1-second interval.

For the temporal assumption on obstacle, use a Detector block with output type of
"Delayed Fixed Duration" to capture the fixed duration of 1 second (5 time steps with 0.2

sample time).

% Global Assumptions
open_system('sldvdemo powerwindow vs/Global Assumptions')

These assumptions using the "Assumption’ blocks apply globally to all property proofs

boolean
[Chstacle]

obstacle

1. Obstacle and EndStop not true simultanecusly 2. Obstacle shall not occur multiple times within the following 1 sec interval.

[Cbstacle] true - e

n boolean

EndStop

Chstache | Cut i)
HANE D boflean | — L A===B

’-53
NOT

Now consider the first controller requirement for Obstacle Response.

hJ

% Obstacle Response
open_system('sldvdemo powerwindow vs/Verification Subsystem2')

12-57

12 Proving Properties of a Model

Requirement:
Whenever an obstacle is detected, then the down command shall be given for 1 second.

L

boolean [
1 > “
D boolean J_ b OoR —

obstacle _l—l_ Ot
boolean _
o
true

EndStop A

@ boolean

Act_DownCmd

Y

hJ
o

Here, use the Detector block with output type of "Delayed Fixed Duration" for the
property specification. After detection of the obstacle, construct a fixed interval of 4
steps. Note that the input is not observed during the output construction phase for the
Detector with "Delayed Fixed Duration" output type. In the case where the obstacle can
occur freely in absence of the assumption, you might wish to observe all the intermediate
occurrences of the obstacle. This can be achieved through an Extender block with "Finite
extension duration of 4 time steps.

Now consider the AutoDown feature of the power window controller.

12-58

Power Window Controller Temporal Properties

(1) NOT >
D_down AND .
[CriverUp] [DriverUp] HOT I
D_up OR [Meo_Cmed)
© prveon g P
fat | .
Act_DownCmd | . : al
- [DriverUp) >
e [Obstacle] |
obstacle
[EndStop] [DriverUp)
EndStop [EndStop] oR [HaltCown]
[Cbstacle)

Requirement (Autodown)
If the driver presses the down button for less than 5 steps, then the controller gives the down command as long as
end has not been reached or the driver presses the up button.

DriverDown]) Il 0 O
t - DownCond 7 L LE

|
letector_out

Detector!
| [Me_Cmd]

Drriver_Mo_Cmd

AND

— AND

HaltDown] NOT ol Out .
Mot_HshDown| T L - Dietector?_Out fal

trs

Detector? nIL

[HaltDown) Ot
OR ._J= -t

| [ActDown]

F

trs

A
A ===B1

¥

For illustration, consider this property specification in smaller parts:

1 The first temporal duration of interest, "driver presses the down button for less than
1 second", is captured by Detectorl. At sample rate of 0.2, the 1-second interval is
broken down into 5 time steps. On detection of the down signal, Detectorl constructs

12-59

12 Proving Properties of a Model

12-60

a b-step fixed temporal duration at its output, which you will subsequently use in
combination with other constraints.

2 For the AutoDown feature, you know that the down signal cannot be pressed for more
than 1 second, or 5 time steps. Thus, you want to ensure that both driver up and
down are "true" or both are "false" in less than 5 steps after down is pressed. By
taking the AND of this driver neutral and the Detector output, enforce the constraint
that driver down can be pressed for any number of consecutive time steps less than
5.

3 You also need to ensure that, during this period, other signals such as obstacle,
EndStop and DriverUp are not true, since these will take the controller out of
responding to the down press. This is captured using Detector2 by enforcing that
NOT(HaltDown) is true for 5 time steps. Detector2 has "Delayed Fixed Duration"
output type. It also has "Time steps for input detection" = 5 and "Time steps for
output duration" = 1.

Take the AND of these constructed durations.

5 For the AutoDown feature, you do not want to limit the number of time steps for
which the controller gives the down command. You know that you want the controller
to keep giving the down command as long as the driver does not press an up or down
command again, or an obstacle or the physical end of the window frame is not hit.
This behavior can be captured by the Extender block with "Infinite" extension period
and an external reset signal that encodes the condition to end the extension.

6 The final piece is an Implies block that takes the temporal duration constructed as
explained above and checks if the controller down command is true for every time
step of this duration.

Once you have this initial property specification, you can use it for property proving with
Simulink Design Verifier. You will get a counterexample for this property. The
counterexample shows a scenario where the down command is given when the controller
was in the emergency down state due to the response to an earlier detected obstacle.
After you add a constraint to avoid this, you will get another counterexample: if the down
button is pressed when previously the up command was being given, the AutoDown
feature is disabled and the down command is given only as long as the down button is
pressed. Looking at these counterexamples and observing the model, you can see a
pattern that the AutoDown feature is enabled only when the controller is in a neutral
state to begin with when the driver presses the down button.

Incorporate this constraint by forcing the controller output to be neutral - neither up nor
down command is true - as a precondition for the AutoDown property. This property is
proven valid.

Power Window Controller Temporal Properties

% Valid AutoDown
open_system('sldvdemo powerwindow vs/Verification Subsystem3')

O_down
O
O _up

oolean

A

=]
(%]

md
boolean

WO

Q
o

stacle
boolean

e

boolean

:

EndStop

[ActDiown]

[Cbstacka]

[ActUp]

[EndStop]

Requirement (Autodown)

If the driver presses the down button for less than 5 steps, then the controller gives the down command as long as

riverDiown)

[CirvearUp]

[Cirivearlp]
[EndStop]

[Cbstacha]

NOT

h 4

AND

NOT

¥

k4

h 4

AND

R

¥

OR

He<"" [HaltDown]

k4

end has not been reached or the driver presses the up button.

C I
2k
I
=
]
[=
=3
|
[

:

[Mo_Cmed]

[HaltDiown]

[HaltDiown]

Test Case Generation for Property Validation

lActup] >

NOT

NOT

L I |
AND o |1 Dt o
Dowbéiedn | —] L " Oetectort_Out
- aMD
Driver_Mo_Cmd
bl T AND
oolean |
NOT > Out >
Mot_HaltDown .| L Detector?_Out
nl 1
boolean
Cut

OR

| 5
*

AND

frue

¥

L

A==8

[Act_Neutral]

true

Once the properties are specified, in addition to property proving, you can run Simulink
Design Verifier to automatically generate test cases that exercise various conditions in the
property. This can be achieved by placing custom Test Objective blocks at appropriate

locations in the property.

12-61

12 Proving Properties of a Model

One such location to place a Test Objective block (with "true" value) is on the signal
feeding into the first input of the Implies block (as shown in the above property). On
running test generation, this Test Objective is satisfied and you will get a test case
exercising the various constraints encoded in the property. Simulink Design Verifier can
also create a test harness to simulate this test case. The Signal Builder block with
relevant signals is shown below.

J wgnal pailder (skdvdemo_powenwindow_ws_harmess/Inputs) * =100 =]
Be Gt Goup Sged Ames Heb a
M rRm@E oo =P (FREE e 0 o= e B
Autivn Growp: Ir--: Cums 3 j 'ﬁ"l = =
1
i upl
1 I I L L I
| coeaeni
A5
u} 1
1
upP
asl 7
a
u coranF
05 [
a
4L I I I I I
erdatop
a
,1 1 I I I 1
0 0.2 0.4 0.8 ¥} i i.2
Time [5ec)
1wfl Freed Righd Prind BT | ubamnn
. el [=l
Harm; |:uwr|P I: | | Ll |abnnl
Intens |4 = T=| ¥ | coatacle [ETY
cndatap Takaun! -1
Addjust segment ¥ pesmaon [amenF 91 TN Fitec]

One can now simulate this test case, and see how the temporal durations are created in
the property by placing a scope that displays the input and output values of the two
Detector blocks and No Cmd.

12-62

Power Window Controller Temporal Properties

1 Wiewer: Scope {DownCond, Detectorl_ Out, Driver_Ro_Cmd, Mot _HaltDown, De

Manually inspecting the test case values enables you to see if the specified property
behaves as intended.

This Test Objective block helps in identifying a scenario where the property is valid while
the Implies block is not trivially true. An Implies block is trivially true when its output is
true because of its first input being false. When you get a test case satisfying this Test
Objective, you know that there is at least one case where the first input to the Implies
block is true.

This exercise can help you validate your property specifications by manually inspecting
the test cases automatically generated by Simulink Design Verifier.

Clean Up

To complete the example, close all the opened models.

12-63

12 Proving Properties of a Model

close system('sldvdemo TOBlocks',0Q);
close system('sldvdemo powerwindowController',0);
close system('sldvdemo powerwindow vs',0);

12-64

Debug Property Proving Violations by Using Model Slicer

Debug Property Proving Violations by Using Model
Slicer
This example shows how to debug property proving violations by using Model Slicer.

Consider the model sldvdemo cruise control verification. This model contains
an Assertion block.

The Verification subsystem Safety Properties models a property that should hold true for
the design model. This subsystem contains an Assertion Block (BrakeAssertion) that
verifies the property. Simulink Design Verifier Property Proving analysis will try to falsify
the assertion. If Simulink Design Verifier is successful it will generate a counterexample
falsifying the assertion. We can use Model Slicer to debug this falsified assertion.

1. Open model sldvdemo_cruise_control_verification.

open_system ('sldvdemo cruise control verification')

12-65

12 Proving Properties of a Model

Simulink Design Verifier Property Proving Workflow for Cruise Control

Part 1: Finding Property Viclations

sldvdemo_cruise_control_defective

throt b 1)
@ InBus Throttle

I tDat
nputbata target 2)

Design Model

Throttle_Out

Safety Properties

This example shows how to find a property viclation using Simulink Design Verifier property proving analysis.
This verification model contains a model reference to the actual design model and the verification subsystem
containing the safety properties. The design model references a cruise control system. It consists of a Pl

Conftroller that computes the throttle cutput based on the difference between the actual and the target speed.

This model is configured for Simulink Design Yerifier to return a counterexample for the property defined.

Run View Options Open Fixed Model
(double-click) (double-click) (double-click)

Open the Fixed Model

Copyright 2006-2013 The MathWorks, Inc.

2. Open Simulink Design Verifier by clicking on Apps > Design Verifier.

12-66

Debug Property Proving Violations by Using Model Slicer

3. Click Prove Properties. Simulink Design Verifier analyses the model and displays the
results in Results Summary window.

12-67

12 Proving Properties of a Model

12-68

Simulink Design Verifier Results Surmmary: sldvdemo_cruise_control_verification_replace...

Progress |
Objectives processed 11

Valid 0

Falsified 1

Elapsed time 0:25

Property proving completed normally.
1/1 objective falsified

Results:

* Highlight analysis results on modsl

= iew tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Open harness model

* Export test cases to Simulink Test

Data saved in: sldvdemo_cruise_control_verification_sldvdatal.mat
in folder: C:\Users\pgurajal\Desktop'sldv_output\sldvdemo cruise control_verification

View Log Close

Debug Property Proving Violations by Using Model Slicer

The model highlights the subsystem where the Assertion block is located.

Simulink Design Verifier Property Proving Workflow for Cruise Control

Part 1: Finding Property Violations

sldvdemo_cruise_control_defective
throt 1)
“mm InBus Throttle
InputData target :@
o . Target
Design Model

L J

Thirotthe_Cut

in

Safety Properties

This example shows how to find a property violation using Simulink Design Werifier property proving analysis.
This varfication model contains a model reference to the actual design model and the varification subsystem
containing the safaty properties. The design model referances a cruise control system. It consists of a PI

Controller that computes the throtile output based on the difference batwean the actual and the target speed.

This model is configured for Simulink Design Verifier to return a counterexample for the property defined.

Run View Options Open Fixed Model
{double-click) {double-click) {double-click)

Open the Fixed Model

Cooyrighl 2006-201 3 The MathiVorks, Inc.

4. Open Safety Properties subsystem and select the falsified Assertion block.

5. Click Debug Using Slicer from the toolstrip menu to debug the violation using Model
Slicer. Alternatively, you can click Debug in the results Inspector window.

On Clicking either of the entry points the following setup is done on the model:

12-69

12 Proving Properties of a Model

. The Assertion block is added as a starting point for Model Slicer.
. The model is highlighted with the counterexample generated by Simulink Design Verif:
c. The design model is simulated and paused at the time-step of assertion failure.

o Q

6. Debug and analyze the model by using the Step Back and Step Forward buttons, and
inspecting the Port labels.

» The Assert block tests if the output of A implies B (A==>B) is false.

* Ais true when the brake input in is true for three consecutive time steps.

* B is true when the Throttle out <=0

You can notice that the simulation is stopped at t=0.04 when the condition A==>B is
false. This can be observed from the Port labels.

BrakeAssertion

Locate Defective Behavior |

a. On the Simulation tab, click the Step Back to see the port labels of all the blocks at T
= (T-0.1).

12-70

Debug Property Proving Violations by Using Model Slicer

[0 100]

E r_rue||_speed

BrakeAssertion

| Locate Defective Behavior |

You can notice that the Port label of A is false till T=0.04, when it becomes true. At this
point the Port label of B is false (Throttle Out > 0). The property is falsified because
Throttle_Out is greater than 0.

b. To view the blocks that results in the failure, open the Design Model > Controller.
The dependent blocks and path are highlighted.

12-71

12 Proving Properties of a Model

To view the fix, open sldvdemo_cruise control verification model and the click
the Open Fixed Model button on the canvas.

12-72

Design and Verify Properties in a Model

Design and Verify Properties in a Model

You can use Simulink® Design Verifier™ to model design requirements as properties and
then prove properties in a model. To verify that the properties associated with the model
requirements hold under all possible input values, use property proving analysis. If the
requirement fails, Simulink Design Verifier provides counterexamples to debug the
failure.

This example explains how you can model design requirements as properties by using a
Proof Objective block and then verify the property for simplified cruise control model
discussed in “Analyze a Simple Cruise Control Model”.

Step 1: Design Property Using Verification Subsystem

The model sldvexSimpleCruiseControlProperties consists of Verification
Subsystem, that consists of function requirements modeled by using Proof Objective
block.

load system('sldvexSimpleCruiseControlProperty');
open_system('sldvexSimpleCruiseControlProperty/Verification Subsystem');

12-73

12 Proving Properties of a Model

Precondition - (set speed > current speed) when cruise
engaged

1 |_’
Engags AMD

-
Logical ‘erification Check
Enablad Operatar? Logical
Operator3 frus

Procf Objective

E“f

> >

sat spead ==
Relational
Relational

current spead COperator2 | Onerator
L L =
A==sB

¥
e

frue
Test Objective

¥
m

Unit Delay2

Implies

Implication - Throttle increases

(5 r—= >
=
Throttle
! Relational

- Operator3

Unit Delay1

Step 2: Perform Property Proving Analysis

On the Apps tab, click arrow on the far right of the Apps section. Under Model
Verification, Validation, and Test gallery, click Design Verifier.

To perform property proving analysis, click Prove Properties. The software analyzes the
model and displays the results in the Results Summary window. The result indicates that

one objective is valid under approximation.

12-74

Design and Verify Properties in a Model

Progress |

Objectives processed 11
Valid 0
Falsified 1]
Elapsed time 0:52

Property proving completed normally.
1/1 objective valid under approximation

Results:

* Highlight analysis results on model
* Detailed analysis report: (HTML) (PDF)

Data saved in: sldvexSimpleCruiseControlProperty sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
\sldvexSimpleCruiseControlProperty

Step 3: Review Analysis Results

On the Design Verifier tab, in the Review Results section, click Highlight in Model.

The property that is valid under approximation is highlighted in orange. Click the Proof

Objective block. The Results Inspector window displays the objectives of the Proof
Objective block.

12-75

12 Proving Properties of a Model

Verification Check
L Results: sldvexSimpleCr... — O =
¥
G Back to summary
| A
iy A===B sldvexSimpleCruiseControlProperty fVerification
plo frue Subsystem/Proof Objective
4 Test Objective
- Proof objective Objectives
Implies @ L
Objective: T

To view the HTML report, in the Review Results section, click HTML Report. The Proof
Objective Status chapter lists the proof objective that is found valid under approximation.

Objectives Valid under Approximation

Analyvsis
|Tvpe Model Item Description Time Counterexample
(sec)
Proof Venfication S - _
I objective [Subsvstem Proof Objective Objective: T 01 wa

See also

* “What Is Property Proving?” on page 12-2
* “Prove Properties in a Model” on page 12-5

12-76

Reviewing the Results

« “Highlighted Results on the Model” on page 13-2

* “Simulink Design Verifier Data Files” on page 13-10

* “Simulink Design Verifier Harness Models” on page 13-18

* “Simulate Harness Model with Signal Editor Inputs Block” on page 13-29
+ “Export Test Cases to Simulink Test” on page 13-35

* “Simulink Design Verifier Reports” on page 13-38

* “Simulink Design Verifier Log Files” on page 13-66

* “Review Analysis Results” on page 13-67

13 Reviewing the Results

Highlighted Results on the Model

13-2

In this section...

“Results Review with Model Highlighting” on page 13-2
“Simulink Design Verifier Results Inspector” on page 13-2
“Highlight Results on Model Automatically” on page 13-2
“Green Highlighting on Model” on page 13-4

“Red Highlighting on Model” on page 13-5

“Orange Highlighting on Model” on page 13-5

“Gray Highlighting on Model” on page 13-8

Results Review with Model Highlighting

When you analyze a model by using Simulink Design Verifier, the analyzed model objects
are automatically highlighted in one of these colors:

* Green

* Red

* Orange

* Gray

You can review the analysis results at a glance by viewing the objects that are highlighted
in the Simulink Editor.

Simulink Design Verifier Results Inspector

When a model is highlighted, you can click an object for which the analysis recorded
results. The Simulink Design Verifier Results Inspector then displays the detailed analysis
results for that object.

Highlight Results on Model Automatically

During analysis, Simulink Design Verifier highlights the model objects automatically when
the objectives status is updated. By default, the automatic highlighting is enabled. To
disable the highlighting, click Disable Highlighting in the Results Summary window.

Highlighted Results on the Model

3'“ nk Design Verifier Results Surmmary: s ermo_cruise_contro
Progress |
Objectives processed 21/32
Satisfied 21
Unsatisfiable 1]
Elapsed time 0:15

27-Jun-2017 16:19:00

Checking compatibility for test generation: model
'sldvdemno_cruise_control'

Compiling model...done

Checking compatibility...done

27-Jun-2017 16:19:01
'sldvdemo_cruise_control' is compatible for test generation
with Simulink Design Verifier.

Generating tests using compatibility results from 27-Jun-2017
16:19:01...

SATISFIED
Controller/Logical Operator
Logic: MCDC (C1 && ~C2) && (C3 || €4) with C1 (Logical

Disable Highlighting Stop

In the Simulink Editor, results highlighting appears on the model. When highlighting is

enabled, the Results Inspector opens displaying the summary of status for analysis

objectives.

13-3

13 Reviewing the Results

'D'i Results: sldvdemo_cruise_control — O >

Test generation in progress.
20/32 objectives are satisfied.
12/32 objectives are in progress.

Results:

* Detailed analysis report: (HTML) (FDF)

Note Simulink Design Verifier does not highlight the Stateflow state transition tables.
The Simulink Design Verifier reports, data files, and log files include the analysis data for

the state transition tables. Using the report, you can navigate to the state transition
tables.

Green Highlighting on Model

Objects that are highlighted in green have the following meaning for each type of
analysis.

Analysis Mode Green highlighting
Design error detection

The analysis did not find overflow or division-by-zero errors.
* The analysis did not find dead logic.

* The analysis did not find intermediate or output signals
outside the range of user-specified minimum and maximum

constraints.
* The analysis did not find out of bound array access errors.
Test generation The analysis found test cases that satisfy the test objectives.
Property proving The analysis found all the proof objectives as valid.

13-4

Highlighted Results on the Model

Red Highlighting on Model

Objects that are highlighted in red have the following meaning, depending on the analysis
type.

Analysis Mode Red highlighting

The analysis found at least one test case that causes
overflow or division-by-zero errors.

Design error detection

* The analysis found dead logic.

* The analysis found intermediate or output signals outside
the range of user-specified minimum and maximum
constraints.

* The analysis found at least one test case that causes an out
of bound array access error.

Test generation The analysis did not satisfy certain test objectives.

Property proving The analysis disproved a proof objective and generated a
counterexample that falsified that objective.

If your model contains at least one object highlighted in red, there might be further
design errors in your model that Simulink Design Verifier does not highlight in red. If an
object in your design causes run-time errors, Simulink Design Verifier might not be able
to determine further errors on objects that are downstream of or rely on the results of the
object that causes the run-time errors. Resolve the errors that cause the initial red
highlighting and rerun the analysis to determine if Simulink Design Verifier highlights
other objects in your model as red.

Orange Highlighting on Model

Objects that are highlighted in orange have the following meaning, depending on the
analysis type.

13-5

13 Reviewing the Results

13-6

Analysis Mode

Orange highlighting

Design error detection

For the highlighted model object,

* The analysis did not decide at least one design error
detection objective. This situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* The analysis cannot decide a design error detection
objective because of division by zero or nonlinear
arithmetic.

* The software cannot decide a design error detection
objective because of stubbing. For more information, see
“Handle Incompatibilities with Automatic Stubbing” on
page 2-8.

* The software cannot decide a design error detection
objective because of limitations of the analysis engine.
For example, if the analysis encounters an unbounded
while loop, it performs an approximation. For more
information, see “Approximations” on page 2-22.

* The analysis found dead logic that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-26.

* The analysis found valid objectives that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-26.

Highlighted Results on the Model

Analysis Mode Orange highlighting

Test generation For the highlighted model object,

* The analysis did not decide at least one test objective. This
situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* The analysis cannot decide a test objective because of
division by zero or nonlinear arithmetic.

* The software cannot decide a test objective because of
stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

* The software cannot decide a test objective because of
limitations of the analysis engine. For example, if the
analysis encounters an unbounded while loop, it
performs an approximation. For more information, see
“Approximations” on page 2-22.

* The analysis found unsatisfiable objectives that
approximations can impact. For more information, see
“Reporting Approximations Through Validation Results” on
page 2-26.

* The analysis is unable to confirm the satisfied status
through validation results. For more information, see
“Objectives Satisfied - Needs Simulation” on page 13-52.

13-7

13 Reviewing the Results

13-8

Analysis Mode

Orange highlighting

Property proving

For the highlighted model object,

The analysis did not decide at least one proof objective. This
situation can occur when:

o The analysis is still in progress.
* The analysis times out.

* A proof objective exists on a signal whose value the
software cannot control, for example, a Constant block.

* The analysis cannot decide a proof objective because of
division by zero or nonlinear arithmetic.

* The software cannot decide a proof objective because of
stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-8.

* The software cannot decide a proof objective because of
limitations of the analysis engine. For example, if the
analysis encounters an unbounded while loop, it
performs an approximation. For more information, see
“Approximations” on page 2-22.

The analysis found valid objectives that approximations can
impact. For more information, see “Reporting
Approximations Through Validation Results” on page 2-26.

The software is unable to confirm the falsified status
through validation results. For more information, see
“Objectives Falsified - Needs Simulation” on page 13-55.

Gray Highlighting on Model

Objects that are highlighted in gray have the following meaning.

Highlighted Results on the Model

Analysis Mode Gray Highlighting
* Design error The model object was not part of the analysis.
detection

* Test generation
* Property proving

13-9

13 Reviewing the Results

Simulink Design Verifier Data Files

13-10

In this section...

“Data File Generation” on page 13-10

“Contents of sldvData Structure” on page 13-10
“Model Information Fields in sldvData” on page 13-11
“Simulate Models with Data Files” on page 13-17

“Load Results from Data Files” on page 13-17

Data File Generation

Simulink Design Verifier generates a data file when it completes its analysis. The data file
is a MAT-file that contains a structure named sldvData. This structure stores all the data
the software gathers and produces during the analysis. Although the software displays
the same data graphically in the harness model and report, you can use the data file to
conduct your own analysis or to generate a custom report.

By default, the Save test data to file parameter is enabled.

Contents of sldvData Structure

When Simulink Design Verifier completes its analysis, it produces a MAT-file that contains
a structure named sldvData. To explore the contents of the sldvData structure:

1 Generate test cases for the sldvdemo flipflop model:
sldvdemo flipflop;

sldvrun('sldvdemo flipflop');
2 To load the data file, at the MATLAB prompt, enter the following command:

load('sldv output\sldvdemo flipflop\sldvdemo flipflop sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace. This
structure contains the Simulink Design Verifier analysis results of the
sldvdemo flipflop model.

3 Enter sldvData at the MATLAB command line to display the field names that
constitute the structure:

matlab:sldvdemo_flipflop

Simulink Design Verifier Data Files

sldvData =

ModelInformation: [1x1 struct]
AnalysisInformation: [1x1 struct]
ModelObjects: [1x2 struct]
Constraints: []
Objectives: [1x12 struct]
TestCases: [1x4 struct]
Version: '2.1'

Model Information Fields in sldvData

The following sections describe the fields in the sldvData structure:

* “Modellnformation Field” on page 13-11

* “AnalysisInformation Field” on page 13-12

* “ModelObjects Field” on page 13-13

* “Constraints Field” on page 13-13

* “Objectives Field” on page 13-13

* “TestCases Field / CounterExamples Field” on page 13-14
* “Version Field” on page 13-16

+ “DeadLogic Field” on page 13-16

Modelinformation Field
In the sldvData structure, the ModelInformation field contains information about the

model you analyzed. The following table describes each subfield of the
ModelInformation field.

Subfield Name Description

Name The model name.

Version The model number.

Author The user name.

TimeStamp The last date and time the model was updated.
SubsystemPath The full path name of the subsystem (if any) that was analyzed.

13-11

13 Reviewing the Results

13-12

Subfield Name

Description

ExtractedModel The name of the model extracted (if any) to analyze the
subsystem (if any) specified in SubsystemPath.

ReplacementModel The name of the model (if any) that contains the block
replacements.

HarnessOwnerModel |The name of the owner model of the Simulink Test test harness

(if any) being analyzed.

Analysisinformation Field

In the sldvData structure, the AnalysisInformation field lists settings of particular
analysis options and related information. The following table describes each subfield of
the AnalysisInformation field.

Subfield Name

Description

Status The completion status of the Simulink Design Verifier analysis.

AnalysisTime Double that specifies the length of the analysis in seconds.

Options Deep copy of the Simulink Design Verifier options object used
during the analysis.

InputPortInfo Cell array of structures that specifies information about each
Inport block in the top-level system.

OutputPortInfo Cell array of structures that specifies information about each
Outport block in the top-level system.

SampleTimes For internal use only.

Parameters For internal use only.

AbstractedBlocks For internal use only.

Approximations A structure that describes the approximations performed during
the analysis. For more information about approximations, see
“Approximations” on page 2-22.

ReplacementInfo For internal use only.

PreProcessingTime |Double that specifies the time in seconds to build or reuse the
model representation.

ModelRepresentatio |The date and time of the model representation that is used for

nInfo analysis.

Simulink Design Verifier Data Files

ModelObjects Field

In the sldvData structure, the Model0Objects field lists the model items and their
associated objectives. The following table describes each subfield of the Model0bjects
field.

Subfield Name Description

descr The full path to a model object, including objects in a Stateflow
chart.

typeDesc The block type of the model object.

slPath The full path to a Simulink model object.

sfObjType The type of a Stateflow object. Example: S for state and T for
transition.

sTObjNum Integer that represents the unique identifier of a Stateflow
object.

sid For internal use only.

designSid For internal use only.

replacementSid For internal use only.

objectives Vector of integers that represents the indices of objectives
associated with a model object.

Constraints Field

In the sldvData structure, the Constraints field lists information about specified
minimum and maximum values (if any) on input ports in your model. The following table
describes the subfield of the Constraints field.

Subfield Name Description

DesignMinMax Cell array of structures that include the
name and minimum and maximum values
for each input port for which values are
specified.

Objectives Field

In the sldvData structure, the Objectives field lists information about each objective,
such as its type, status, and description. The following table describes each subfield of the
Objectives field.

13-13

13 Reviewing the Results

13-14

Subfield Name

Description

type The type of an objective.

status The status of an objective.

descr The description of an objective.

label The label of an objective.

outcomeValue Integer that specifies an objective's outcome.

coveragePointIdx Integer that represents the index of a coverage point with which
an objective is associated.

linkInfo For internal use only.

range For internal use only.

detectability The detectability status of an objective.
This field appears in the data file when the analysis “Mode” on
page 15-13 is set to Test Generation and “Model coverage
objectives” on page 15-39 is set to Enhanced MCDC.

detectionSites Array of Simulink Identifier (SID) of the detection sites for a
detectable objective. The objective is detectable at any one of
the detection sites.
This field appears in the data file when the analysis “Mode” on
page 15-13 is set to Test Generation and “Model coverage
objectives” on page 15-39 is set to Enhanced MCDC.

modelObjectIdx Integer that represents the index of a model object with which
an objective is associated.

analysistime Integer that represents the analysis time for an object.

testCaseldx Integer that represents the index of a test case or

counterexample that addresses an objective.

TestCases Field / CounterExamples Field

In the sldvData structure, this field can have two names, depending on the type of

check:

» Ifyou set the Mode parameter to Design error detection, the
CounterExamples field lists information about each test case that results in an
integer overflow or division-by-zero error.

Simulink Design Verifier Data Files

» Ifyou set the Mode parameter to Test generation, the TestCases field lists
information about each test case, such as its signal values and the test objectives it

achieves.

* Ifyou set the Mode parameter to Property proving, the CounterExamples field
lists information about each counterexample and the proof objective it falsifies.

The following table describes each subfield of the TestCases / CounterExamples field.

Subfield Name

Description

timeValues

Vector that specifies the time values associated with signals in a
test case or counterexample.

dataValues

Cell array that specifies the data values associated with signals
in a test case or counterexample.

paramValues

Structure that specifies the parameter values associated with a
test case or counterexample. Its fields include:

name — The name of a parameter.
value — Number that specifies the value of a parameter.

noEffect — Logical value that specifies whether a parameter's
value affects an objective.

stepValues

Vector that specifies the number of time steps that comprise
signals in a test case or counterexample.

objectives

Structure that specifies objectives that a test case or a
counterexample addresses. Its fields include:

objectiveIdx — Integer that represents the index of an
objective that a test case achieves or a counterexample falsifies.

atTime — Time value at which either a test case achieves an
objective or a counterexample falsifies an objective.

atStep — Time step at which either a test case achieves an
objective or a counterexample falsifies an objective.

13-15

13 Reviewing the Results

Subfield Name

Description

dataNoEffect Cell array of logical vectors that specifies whether a signal's
data values affect an objective. The vector uses 1 to indicate
that a signal's data value does not affect an objective; otherwise,
it uses 0.

expectedOutput Cell array of vectors that specifies the output values that result

from simulating the model using the test case signals. Each cell
represents the output values associated with a different Outport
block in the top-level system. This subfield is populated if you
select Include expected output values.

Version Field

In the sldvData structure, the Version field specifies the version of Simulink Design
Verifier that analyzed the model.

DeadLogic Field

If you analyze your model for dead logic, in the sldvData structure, the DeadLogic field
lists information about each dead logic objective.

This table describes each subfield of the DeadLogic field.

Subfield Name Description

label The description of the dead logic objective.

descr The full path to a model object, including objects in a Stateflow
chart.

model0bjIdx Integer that represents the index of a model object that is
associated with an objective.

coverageType The type of coverage objective.

coverageIdx Integer that represents the index of a coverage point that is
associated with an objective.

Objectiveldx Integer that represents the index of an objective that is
associated with a model object.

13-16

Simulink Design Verifier Data Files

Simulate Models with Data Files

The sldvruntest function simulates a model by using test cases or counterexamples
that reside in a Simulink Design Verifier data file:

1

Simulate the sldvdemo flipflop model and generate test cases:

sldvdemo_ flipflop

Save the location of the data file generated after analyzing the model:

sldvDataFile = 'sldv_output\sldvdemo flipflop\sldvdemo flipflop sldvdata.mat'

Use the sldvruntest function to simulate the sldvdemo flipflop model using
test case 2 in the data file:

[outdata] = sldvruntest('sldvdemo flipflop', sldvDataFile, 2)

The output from sldvruntest is an array of Simulink.SimulationOutput
objects.

Examine the output data from the first test case using the methods of the
Simulink.SimulationOutput object:

tout _sldvruntest = outdata(l).find('tout sldvruntest');
xout _sldvruntest = outdata(l).find('xout sldvruntest');
yout sldvruntest = outdata(l).find('yout sldvruntest');

logsout sldvruntest = outdata(l).find('logsout sldvruntest');

Load Results from Data Files

You can load previous analysis results for a model from a data file. For more information,
see “Load Previous Results” on page 13-67 and sldvloadresults.

13-17

matlab:sldvdemo_flipflop

13 Reviewing the Results

Simulink Design Verifier Harness Models

In this section...

“Harness Model Generation” on page 13-18

“Create a Harness Model” on page 13-18

“Contents of a Harness Model” on page 13-19
“Configuration of the Harness Model” on page 13-25

“Simulate the Harness Model” on page 13-26

Harness Model Generation

A harness model provides an isolated environment to test design changes. You can create
a harness model during Simulink Design Verifier analysis or after the analysis.

The contents of the harness model depends on the value of the Mode parameter, set in
the Configuration Parameters dialog box on the Design Verifier pane:

* Design error detection — The harness model contains the test cases that result
in errors during simulation.

*+ Test generation — The harness model contains the test cases that achieve test
objectives.

* Property proving — The harness model contains counterexamples that falsify the
proof objectives.

By default, the Generate separate harness model after analysis parameter is
disabled.

Note The Simulink Design Verifier software generates a harness model only when the
top-level model that you are analyzing contains an Inport block.

Create a Harness Model

To create a harness model before or after the analysis, use these methods:

» Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Results pane, select Generate separate harness model after analysis.

13-18

Simulink Design Verifier Harness Models

* After the analysis, in the Simulink Design Verifier Results Summary window, select
Create harness model.

Contents of a Harness Model

Simulink Design Verifier software creates a harness model that contains these items:

» Inputs — The Inputs block is a Signal Builder or Signal Editor block based on the
“Harness source” on page 15-71 option set in the Design Verifier > Results pane.

* Signal Builder: This block contains signals that are comprised of the test cases or
counterexamples that Simulink Design Verifier generates. The Signal Builder block
contains signals only for input signals that are used in the model. If an input signal
has no effect on the output of the model, that signal is not included in the Signal
Builder block.

Size Type

Test Case 1 enzble =nable

thirot —h@

s=t ==t throt
/\ inc inc
N i target

I e dec target

speed » ..":-lé B
Inputs Test Unit {copied from sldvdeme_ocruise_control)
M=
Do
Text

Test Case Explanation

To open the Signal Builder dialog box and view its signals, double-click the Inputs
block. Each signal group represents a unique test case or counterexample. To view
the signals associated with a particular test case or counterexample, in the Signal
Builder dialog box, select Active Group.

13-19

13 Reviewing the Results

After Simulink Design Verifier performs test generation analysis on the
sldvdemo cruise control model with the default options, this Signal Builder
block shows the signals for Test Case 7.

I

u Signal Builder (sldvdemo_cruise_control_harness/Inputs) * EI @

File Edit Group Signal Axes Help y

SH bR oo —~TuETREE > 1 o= 2|

Active Group: | Test Case 7

'
'
'
'
'
'
'
'
'
1
'
'
'
a

—_= = R
|

oo M o s o
[

=

o]

'
'
'
'
'
'
'
'
'
'
'
'
'
) IR —

Left Point Right Point

brake {shown)
Name: enable T: T: et {shown)

= inc {shown)
Index: 1 - ¥: Y: dec {shown)
- speed {shown) -

Click to select point or segment, Shift+click to add points enable (#1) [¥Min ¥Max]

13-20

Simulink Design Verifier Harness Models

If you select the LongTestcases option of the Test suite optimization
parameter, the analysis creates fewer, longer test cases. For example, if you select
the LongTestcases option for the sldvdemo cruise control model, the
analysis produces one long test case instead of nine shorter test cases. This Signal
Builder dialog box shows the signals for the long test case. For more information
about the Signal Builder dialog box, see “Signal Groups” (Simulink).

13-21

13 Reviewing the Results

13-22

u Signal Builder (sldvdemo_cruise_control_harness/Inputs) EI@
File Edit Group Signal Axes Help E
FE| 2R oo —=THEEFREE» o= | § R 3
Active Group: Test Case 1 v: @ » | = =
T4—o--a—p-- ¥ —t—t—" r—0
oslcmee Lo b e S S S
(=L Ll SEERPPTEPPPPPREP EEEEEEEEEREPTPPRP PR frocmomoeoneooees frocoecomoeoionono. EEEEELEES
I T REREEECEEEEEE R R R EREEEEEEE
osl bk [T 1T T T A [.
ob—L. L1 . a : .
1 R e bl -ttt oo - mmmmmmmmeeed T
ol S I O S IO 0 SRR S S .
) S - . i . .
1 — 1 1 ' — -
ok L1 S S N E— b A -
------—------- Fommmmmmmsesssosooon R mTmmmosmossoseseod iTmmommmmssessooooy AR
e Rt SR e Tt St
0! : : L s : :
100 f----mmmmmmmmmiemes R Rl g R e R bk - mmmmmmmmeeed RERREEEE
o T SO T— i
0 a e . a a

0 0.05

LLeft Pormt -

brake {shown)

Name: enable Ts T: set {shown)

ine {shown)

Index: 1 - f L dec {shown)
speed {shown) -

ok enable (#1) [YMin ¥Max]
L]

Signal Editor: This block contains scenarios that are comprised of the test cases or
counterexamples that Simulink Design Verifier generates. The Signal Editor block
contains signals only for input signals that are used in the model. If an input signal
has no effect on the output of the model, that signal is not included in the Signal
Editor block.

Simulink Design Verifier Harness Models

After Simulink Design Verifier generates harness model, the input MAT-file for the
Signal Editor block is saved at the default location <current folder>
\sldv_output\<model name>

\<model name> harness HarnessInputs.mat.

Size-Type
enable ——— anable
TestCase_1
brake ———# brake throt »
set 4 el st throt
inc - P inc ’—D@
«]
target
g dec———M dac target g
speed — W ﬂ!ﬂd
Inputs Test Unit {copied from sldvdemo_cruise_contral)
o
DoC
Text

Test Case Explanation

To open the Signal Editor dialog box and view the scenarios of signal sources, double-
click the Inputs block. The Active scenario lists the test cases or counterexamples. To
create and edit scenarios, launch the Signal Editor user interface. For more
information, see “Create and Edit Signal Data” (Simulink).

13-23

13 Reviewing the Results

Block Parameters: Inputs X
Signal Editor

The Signal Editor block displays and allows you to create or edit
interchangeable scenarios of signal sources and quickly switch the scenarios
into and out of a model.

Scenario

File name: l\sldvdemo_cruise_control_hamess_Hamess]nputs.mat| =

Active scenario: | TestCase_1 v|

Signal properties

To create and edit scenarios, launch Signal Editor user interface. Ep
Parameters
Active signal: | speed v|

(] output a bus signal

Unit (e.g., m, m{s~2, N*m): SI, English, ...
|inherit |

sample time: |[0.01,0] IE

[Interpolate data

(] Enable zero-crossing detection

Form output after final data value by: |Holding final value -

7] Cancel Help Apply

* Size-Type — This Subsystem block transmits signals from the Inputs block to the Test
Unit block. It verifies that the size and data type of the signals are consistent with the
Test Unit block.

* Test Unit — This Subsystem block contains a copy of the original model that Simulink
Design Verifier analyzed.

If you select the Reference input model in generated harness on the Design
Verifier > Results pane, the Test Unit is a Model block that references the model that
you are analyzing, not a subsystem.

13-24

Simulink Design Verifier Harness Models

If the Test Unit in the harness model is a subsystem, the values of the parameters on
the Optimization and Math and Data Types panes might impact the coverage

results.

Test Case Explanation — This DocBlock block documents the test cases or
counterexamples that Simulink Design Verifier generates. To view the description of
each test case or counterexample, double-click the Test Case Explanation block. The
block lists either the test objectives that each test case achieves or the proof
objectives that each counterexample falsifies.

>

1 Test Case 1 (8 Ckbjectives)

2 Parameter wvalues:

3

4 1. Controller/Switch3 - logical trigger input false (output is from 3rd input port) @& T=0.00
5 2. Controller/Switch2 - logical trigger input true (output is from 1st input port) @ T=0.00
6 3. Controller/Switchl - logical trigger input true (output is from lst input port) @ T=0.00
7 4. Controller/Logical Cperatorl - Logic: input port 1 false @ T=0.00

8 5. Controller/Logical OperatorZ - Logic: input port 1 true @ T=0.00

i} 6. Controller/Logical Operator - Logic: input port 1 false @ T=0.00

10 7. Controller/Logical Operator - (Cl && ~C2) && (C3 || C4) with Cl (Logical Operator Inl) false @ T=0.00
11 8. Controller/PI Controller - enable logical value false @ T=0.00

12

13 Test Case 2 (4 Cbjectiwves)

14 Parameter values:

15.

16 1. Controller/Logical Cperatorl - Logic: input port 1 true @ T=0.00

17 2. Controller/Logical Operator - Logic: input port 1 true @ T=0.00

13 3. Controller/Logical Cperator - Logic: input port 2 false @ T=0.00

19 4, Controller/Logical Operator - (Cl && ~C2) && (C3 || C4) with C2 (Logical Operatorl Inl) false @ T=0.00
20

21 Test Case 3 (1 Cbhjectiwves)

22 Parameter wvalues:

23

24 1. Controller/Switch2 - logical trigger input false (output iz from 3rd input port) @ T=0.00
25

26 Test Case 4 (1 Objectiwves)

27 Parameter values:

28

25 1. Controller/Switch3 - logical trigger input true (output is from lst input port) & T=0.00
30

31 Test Case 5 (€ Chjsctiwves)

32 Parameter values:

Configuration of the Harness Model

Simulink Design Verifier generates the harness model with these settings.

* The harness model start time is always 0. If the original model uses a nonzero start
time, the software ignores the start time and uses 0 for the simulation start time for
test cases and counterexamples.

13-25

13 Reviewing the Results

13-26

The harness model stop time always equals the stop time of the longest test case in
the Inputs block.

By default, the software enables coverage analysis and generates a coverage report
for the harness models that contain test cases. The coverage reporting is enabled with
default options. You can customize these settings by using “Specify Coverage Options”
(Simulink Coverage).

By default, if you select Ignore objective based on filter and provide a coverage
filter file for the Test Unit, the coverage filter file applies to the harness model. For
more information, see “Coverage data file” on page 15-50.

The harness model is generated with these Inputs block, regardless of the Harness

source that you specify:

* For models that use the complex type Inport block, a Signal Editor block is used as
the harness source.

* For models that use an array of buses as an Inport block, a Signal Builder block is
used as the harness source.

Note For models that uses both complex type and array of buses as Inport blocks,
harness model generation is not supported.

Simulate the Harness Model

The harness model enables you to simulate a copy of your original model by using the test
cases or counterexamples that Simulink Design Verifier generates. Using the harness
model, you can simulate:

A counterexample.

A single test case, for which the Simulink Coverage software collects and displays
model coverage information.

All the test cases, for which the Simulink Coverage software collects and displays
cumulative model coverage information.

Note If you analyze a model that is simulated with sample time warnings, when you
simulate the harness model, the warnings might be reported as errors, causing the
simulation to fail.

Simulink Design Verifier Harness Models

Simulate Harness Model by Using the Signal Builder Source Block

To simulate a single test case or counterexample:

In the harness model, double-click the Inputs block.

In the Signal Builder dialog box, select the Active Group with a particular test case
or counterexample.

The Signal Builder dialog box displays the signals that comprise the selected test
case or counterexample.

Click the Start simulation button ﬂ

The Simulink software simulates the harness model by using the signals associated
with the selected test case or counterexample. When simulating a test case, the
Simulink Coverage software collects model coverage information and displays a
coverage report.

To simulate all test cases and measure their combined model coverage:

In the harness model, double-click the Inputs block.

all
In the Signal Builder dialog box, click the Run all button i}

The Simulink software simulates the harness model by using all test cases, while the

Simulink Coverage software collects model coverage information and displays a
coverage report.

When you click Run all, the software simulates all the test cases by using the stop
time for the harness model. The stop time equals the stop time for the longest test
case, so you might accumulate additional coverage when you simulate the shorter
test cases.

For more information, see “Simulating with Signal Groups” (Simulink).

Simulate Harness Model by Using the Signal Editor Inputs Block

To simulate a single test case or counterexample:

In the harness model, double-click the Inputs block.

In the Signal Editor dialog box, select the Active scenario with a particular test case
or counterexample and click OK.

13-27

13 Reviewing the Results

13-28

3 In the Simulink editor, click the Run button.

The Simulink software simulates the harness model by using the scenario of signal
sources associated with the selected test case or counterexample. When simulating a
test case, the Simulink Coverage software collects model coverage information and
displays a coverage report.

To simulate all the test cases and measure their combined model coverage, use cvsim or
parsim command. For example, see Simulate Harness Model with Signal Editor Inputs
Block on page 13-29.

See Also

“Creating and Executing Test Cases” on page 7-100 | “Create Harness Model” on page 1-
19

Simulate Harness Model with Signal Editor Inputs Block

Simulate Harness Model with Signal Editor Inputs Block

This example shows how to generate model coverage report by simulating the test
harness model with the Signal Editor Inputs block. You can simulate a single test case or
counterexample by selecting the active scenario in the Signal Editor dialog box. For more
information see, “Simulate Harness Model by Using the Signal Editor Inputs Block” on
page 13-27.

To simulate all the test cases and measure their combined model coverage, use the cvsim
or the parsim command.

In this example, you generate a harness model by selecting the Signal Editor as the
harness source. The Signal Editor scenarios consists of signal sources that are associated
with the test cases or counterexamples. Then, to generate combined model coverage
report, you simulate all the scenarios by using the cvsim or parsim function.

1. Open the model and configure harness options

Create a harness model for the sldvdemo cruise control model by using the
sldvharnessopts options. Set the HarnessSource option to Signal Editor.

model = 'sldvdemo cruise control';
open_system(model);
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.SaveHarnessModel = 'on';

opts.HarnessSource = 'Signal Editor';
opts.HarnessModelFileName = 'sldvdemo cruise control harness';

opts.SaveReport = 'off"';

13-29

13 Reviewing the Results

Simulink Design Verifier
Cruise Control Test Generation

L1 F # enable
enable
[2 } P brake throt = 1 }
brake throt
L3 F P st
set [0 100]
s) ——{ewees
speed Actual s
' >inc targetf—————» (2)
inc target
! ﬁ ; = dec
dec

Controller

This example shows how to generate test cases that achieve complete model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One of the test objectives forces the discrete integrator
in the Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500,
The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

Toggle Constraint

Copyright 2006-2012 The MathWarks, Inc.

13-30

Simulate Harness Model with Signal Editor Inputs Block

2. Generate test cases

Analyze the model by using the sldvrun function and sldvoptions.

sldvrun('sldvdemo cruise control', opts);
save system('sldvdemo cruise control harness');

Checking compatibility for test generation: model 'sldvdemo cruise control'

Compiling model...done

Building model representation...done

'sldvdemo cruise control' is compatible for test generation with Simulink Design Verif:

Generating tests using model representation from 27-Aug-2019 17:53:49...

Completed normally.
Generating output files:

Harness model:
C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\5\tp77556a7a\ex99648832\sldv output\sldvdemo

Results generation completed.

Data file:
C:\TEMP\Bdoc19b 1192687 6748\ibF7BE2B\5\tp77556a7a\ex99648832\sldv output\sldvdemo

13-31

13 Reviewing the Results

Size-Type
enabla
TestCase 1 snable ——0
brake ——— brake throt —h-
setf——0 set throt
inc ———— nc t t
o arge
[=]
spaed T ﬂual:l
Inputs Test Unit {copied from sldvdemo_cruise_controd)
=
DoC
Teot

Test Case Explanation

3. Generate combined model coverage report

After the analysis generates the harness model, use this code that uses cvtest and
cvsim functions to generate the combined model coverage report.

signalEditorBlock = 'sldvdemo cruise control harness/Inputs’;
numOfScenarios = str2double(get param(signalEditorBlock, 'NumberOfScenarios'));
harnessModel = 'sldvdemo cruise control harness';

test = cvtest(harnessModel);
test.modelRefSettings.enable = 'On';
test.modelRefSettings.excludeTopModel = 1;
covData = [];

for id = 1:numOfScenarios

set param(signalEditorBlock, 'ActiveScenario',id);
aCovData = cvsim(harnessModel);

if isempty(covData)

covData = aCovData;

else

covData = covData + aCovData;

end

end
save_system('sldvdemo cruise control harness');
cvhtml('Coverage Harness',b covData);

13-32

Simulate Harness Model with Signal Editor Inputs Block

Optionally, you can use this code that uses the parsim function to generate the combined
model coverage report.

signalEditorBlock = 'sldvdemo cruise control harness/Inputs';
numOfScenarios = str2double(get param(signalEditorBlock, 'NumberOfScenarios'));
harnessModel = 'sldvdemo cruise control harness';

simIn = Simulink.SimulationInput.empty(0,numOfScenarios);
for id = 1:numOfScenarios

simIn(id) = Simulink.SimulationInput(harnessModel);

simIn(id) = simIn(id).setBlockParameter(signalEditorBlock, 'ActiveScenario', id);
simIn(id) = simIn(id).setModelParameter('CovEnable', ‘'on');

simIn(id) = simIn(id).setModelParameter('CovSaveSingleToWorkspaceVar', 'on');

end

simOut = parsim(simIn);
cvhtml('Coverage Harness',simOut.covdata);

[27-Aug-2019 17:54:35] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).

[27-Aug-2019 17:56:52] Starting Simulink on parallel workers...
[27-Aug-2019 17:57:21] Configuring simulation cache folder on parallel workers...
[27-Aug-2019 17:57:25] Loading model on parallel workers...
[27-Aug-2019 17:57:38] Running simulations...

[27-Aug-2019 17:57:50] Completed 1 of 3 simulation runs

[27-Aug-2019 17:57:50] Completed 2 of 3 simulation runs

[27-Aug-2019 17:57:50] Completed 3 of 3 simulation runs

[27-Aug-2019 17:57:50] Cleaning up parallel workers...

The coverage report indicates that 100% coverage is achieved by simulating all the test
cases for sldvdemo cruise control model.

Summary

Model Hierarchy/Complexity Testl

Decizion Condition Test Condition Execution

1. Test Unit (copied from sldvdemo _cruize control) 2 100% s 100% ———— 1002 002 ——

2.... Controller T 100% s]100% ———— A 100% —

FI Controller 4 100% m——— NA NA 100% —

13-33

13 Reviewing the Results

5. Clean Up
% To complete this example, close the models.

close system('sldvdemo cruise control harness', 0);
close system('sldvdemo cruise control', 0);

13-34

Export Test Cases to Simulink Test

Export Test Cases to Simulink Test

In this section...

“Overall Workflow” on page 13-35

“Test Case Generation Example” on page 13-35

Model verification often requires repeated testing to achieve certain objectives or
coverage criteria. If you run repeated tests, consider using the Test Manager in Simulink
Test to structure your test cases, archive test results, and generate reports. You can
generate test cases using Simulink Design Verifier and export the test inputs to new test
cases automatically created in the Simulink Test Manager.

Overall Workflow

Exporting generated inputs to new test cases in Simulink Test follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

+ Ifyou use an existing results file, you can load results by either:

* Using the Simulink Test command sltest.import.sldvData.

* Using Load Earlier Results in the Design Verifier tab. Select the MAT-file
with the analysis results.

* Ifyourun a model analysis, the Design Verifier Results Summary window appears
after the analysis completes.

In the results summary window, click Export test cases to Simulink Test.
Select an existing test harness, or create a test harness.

Simulink Test generates the test file and test harness. In the Test Manager, expand
the new test file in the Test Browser to see the individual test cases.

Test Case Generation Example
This example shows how to generate test cases to achieve coverage objectives for a

controller subsystem. It also shows how to add functional test cases from test harnesses
in the model. The example requires a Simulink Test license.

13-35

13 Reviewing the Results

The model is a closed-loop heatpump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot, 'toolbox', 'sltest’', 'examples’,...
'sltestTestCaseFromDVExample.slx'));
Set the current working folder to a writable folder.

In the model, generate tests for the Controller subsystem. Right-click the Controller
block and select Design Verifier > Generate Tests for Subsystem.

4 In the Results Summary window, click Export test cases to Simulink Test.
In the Harness Selection dialog box, select New Harness. Click OK.

The Test Manager displays six new test cases in the test file.

MG Fesults and Artifacts |=| New Test Case 1 m\ Start Page

* ITERATIONS*®

= =] TestFile_GeneratedTests
~TAELE ITERATIONS

= MNew Test Suite 1
[E] Mew TestCase 1 7| HALE IGNAL BUILDER GROUP PARAMETER SET EXTERNAL INPUT LOGGED 5IGNAL SET +
« TestCasel TestCasel
+|TestCase 2 TestCase 2
« TestCase 3 TestCase 3
+|TestCase 4 TestCase 4
«|Test Case 5 TestCase 5
+|TestCase 6 Test Case @

Auto Generate & J2EE T Delete -

6 Click the harness badge to preview the new test harness.

13-36

See Also

Im
conirol_out

Troom_in

Contraoller
Requirement2

Internal Test

conbral_in

Toutside

Troom

TestHarmess1

Harnesses

Open test harness|

7 Add a test case to the other test harness in the model. In the Test Manager, hover

over the new test file name and click the Synchronize Test File button =

8 The Test Manager prompts you to add tests for the Requirement?2 test harness. Select

Simulation for the test type, and click Update Test File.

The Test Manager adds the Requirement?2 test case to the test file.

See Also
sltest.import.sldvData

13-37

13 Reviewing the Results

Simulink Design Verifier Reports

13-38

In this section...

“Simulink Design Verifier Report Generation” on page 13-38
“Create Analysis Reports” on page 13-38

“Front Matter” on page 13-39

“Summary Chapter” on page 13-39

“Analysis Information Chapter” on page 13-40

“Derived Ranges Chapter” on page 13-44

“Objectives Status Chapters” on page 13-45

“Model Items Chapter” on page 13-57

“Design Errors Chapter” on page 13-58

“Test Cases Chapter” on page 13-59

“Properties Chapter” on page 13-64

Simulink Design Verifier Report Generation

After an analysis, Simulink Design Verifier can generate an HTML report that contains
detailed information about the analysis results.

The analysis report contains hyperlinks that allow you to:

* Navigate to a specific part of the report
* Navigate to the object in your Simulink model for which the analysis recorded results

You can also generate an additional PDF version of the Simulink Design Verifier report.

Create Analysis Reports

To create a detailed analysis report before or after the analysis, do one of the following:

» Before the analysis, in the Configuration Parameters dialog box, on the Design
Verifier > Report pane, select Generate report of the results. If you want to save
an additional PDF version of the Simulink Design Verifier report, select Generate
additional report in PDF format.

Simulink Design Verifier Reports

* After the analysis, in the Simulink Design Verifier log window, you can choose HTML
or PDF format and Generate detailed analysis report.

Front Matter

The report begins with two sections:

+ “Title” on page 13-39
* “Table of Contents” on page 13-39

Title

The title section lists the following information:

* Model or subsystem name Simulink Design Verifier analyzed
¢ User name associated with the current MATLAB session

* Date and time that Simulink Design Verifier generated the report
Table of Contents

The table of contents follows the title section. Clicking items in the table of contents
allows you to navigate quickly to particular chapters in the report.

Summary Chapter

The Summary chapter of the report lists the following information:

* Name of the model

* Analysis mode

* Model Representation

* Analysis status

* Preprocessing time

* Analysis time

» Status of objectives analyzed

13-39

13 Reviewing the Results

Analysis Information

Model: sldvdemo cruise control
Mode: Test generation

Model Representation: :?éu_,l.g ?j‘lgl 2-Nov-2018
Test generation target: Model

Status: Completed normally
PreProcessing Time: 4g

Analysis Tume: 24s

Objectives Status

Number of Objectives: 32
Objectives Satisfied: 32

Analysis Information Chapter

The Analysis Information chapter of the report includes the following sections:

* “Model Information” on page 13-40

* “Analysis Options” on page 13-41

* “Unsupported Blocks” on page 13-42

* “Constraints” on page 13-42

* “Block Replacements Summary” on page 13-43
* “Approximations” on page 13-44

Model Information

The Model Information section provides the following information about the current
version of the model:

* Path and file name of the model that Simulink Design Verifier analyzed
* Model version

13-40

Simulink Design Verifier Reports

* Date and time that the model was last saved
* Name of the person who last saved the model

Analysis Options

The Analysis Options section provides information about the Simulink Design Verifier

analysis settings.

The Analysis Options section lists the parameters that affected the Simulink Design
Verifier analysis. If you enabled coverage filtering, the name of the filter file is included in

this section.
Analysis Options

Mode:

Eebwild Model Representation:

Test generation target:

Test Suite Optinuuzation:

Maximum Testcase Steps:

Test Conditions:

Test Objectives:

Model Coverage Objectives:

Include Eelational Boundary Objectives:
Maximum Analvsis Time:

Block Eeplacement:

Parameters Analysis:

Include expected output values:
Randomize data that do not affect the outcome:

Additional analvsis to reduce instances of rational
approxumation:

Save Data:
Save Harness:
Save Report:

TestGeneration
Always

Model

Auto

300time steps
UseLocalSettings
UseLocalSettings
MCDC

off

300s

off

off

off

off

off

on
off
off

13-41

13 Reviewing the Results

Note For more information about these parameters, see “Simulink Design Verifier
Options” on page 15-2.

Unsupported Blocks

If your model includes unsupported blocks, by default, automatic stubbing is enabled to
allow the analysis to proceed. With automatic stubbing enabled, the software considers
only the interface of the unsupported blocks, not their actual behavior. This technique
allows the software to complete the analysis. However, the analysis may achieve only
partial results if any of the unsupported model blocks affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed unsupported blocks;
it lists the unsupported blocks in a table, with a hyperlink to each block in the model.

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. They were abstracted during the
analysis. This can lead Simulink Design Verifier to produce only partial results for parts of the model that
depends on the output values of these blocks.

Block Type
Discrete State-Space DiscreteStateSpace

For more information about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-8.

Constraints

The Constraints section provides information about test conditions that Simulink Design
Verifier applied when it analyzed a model.

Constraints
Amnalysis Constraints

Name Analysis Constraint
constraint [0, 100]

13-42

Simulink Design Verifier Reports

You can navigate to the constraint in your model by clicking the hyperlink in the
Constraints table. The software highlights the corresponding Test Condition block in your
model window and opens a new window showing the block in detail.

Block Replacements Summary

The Block Replacements Summary provides an overview of the block replacements that
Simulink Design Verifier executed. It appears only if Simulink Design Verifier replaced
blocks in a model.

Each row of the table corresponds to a particular block replacement rule that Simulink
Design Verifier applied to the model. The table lists the following:

* Name of the file that contains the block replacement rule and the value of the
BlockType parameter the rule specifies

* Description of the rule that the MaskDescription parameter of the replacement
block specifies

* Names of blocks that Simulink Design Verifier replaced in the model

To locate a particular block replacement in your model, click on the name for that
replacement in the Replaced Blocks column of the table; the software highlights the
affected block in your model window and opens a new window that displays the block in
detail.

Block Replacements Summary

Table 2.1. Block Replacements

H:

1

blkrep rule switch normal /Switch

Replacement Rule / Block Type Rule Description Replaced Blocks

Inserts test objectives for
switch blocks that require
each switch position be
demonstrated when the A
values of input ports 1 and Switch3
3 differ.

Switchl
Switch2

13-43

13 Reviewing the Results

Approximations

Each row of the Approximations table describes a specific type of approximation that
Simulink Design Verifier used during its analysis of the model.

Approximations

Simulink Design Verifier performed the following approximations during analysis. These can impact the

precision of the results generated by Simulink Design Verifier. Please see the product documentation for
further details.

H Type Description

| Rational approximation The model includes floating-point arithmetic. Simulink Design Verifier
PP approximates floating-point arithmetic with rational number arithmetic.

Note Review the analysis results carefully when the software uses approximations. In
rare cases, an approximation may result in test cases that fail to achieve test objectives or
counterexamples that fail to falsify proof objectives. For example, a floating-point round-
off error might prevent a signal from exceeding a designated threshold value.

Derived Ranges Chapter

In a design error detection analysis, the analysis calculates the derived ranges of the
signal values for the Outports for each block in the model. This information can help you
identify the source of data overflow or division-by-zero errors.

The table in the Derived Ranges chapter of the analysis report lists these bounds.

13-44

Simulink Design Verifier Reports

Chapter 3. Derived Ranges

Signal

Controller/Constantl- outport 1
Controller/Unit Delay- outport 1
Controller/Sum- outport 1
Controller/Constant3- outport 1
Controller/Sum2- outport 1

Controller/Switch3/Switch. Defined by block replacement rle
"blkrep rule switch normal'.- outport 1

Controller/Switch2/Switch. Defined by block replacement rule
‘blkrep rule switch normal'.- outport 1

Controller/Switchl/Switch. Defined by block replacement rule
‘blkrep rule switch normal'.- outport 1

Controller/Sum1- outport 1
Controller/Logical Operatorl- outport 1
Controller/Unit Delav1- outport 1
Controller/Logical Operator2- outport 1
Controller/Logical Operator- outport 1

throt- outport 1

target- outport 1

Objectives Status Chapters

Derived Ranges

1

[-Inf..Inf]
[-Inf..Inf]
1
[
[

-Inf..Inf]
-Inf..Inf]

[-Inf..Inf]

[-Inf..Inf]

[-Inf..Inf]

[F..T]

[F..T]

[F..T]

[F..T]

.'[3.59 54e+306..3.5954e+306]
[-Inf..Inf]

This section of the report provides information about all the objectives in a model,
including the type of the objective, the model item that corresponds to the type, and

objective description.

* “Design Error Detection Objectives Status” on page 13-48

» “Test Objectives Status” on page 13-51

13-45

13 Reviewing the Results

13-46

* “Proof Objectives Status” on page 13-53

* “Objectives Undecided due to Runtime Error” on page 13-55

* “Objectives Undecided Due to Division by Zero” on page 13-56

* “Objectives Undecided Due to Nonlinearities” on page 13-56

* “Objectives Undecided Due to Stubbing” on page 13-56

* “Objectives Undecided Due to Array Out of Bounds” on page 13-57

* “Objectives Undecided” on page 13-57

The software identifies the presence of approximations and reports them at the level of
each objective status. For more information, see “Reporting Approximations Through
Validation Results” on page 2-26. This table summarizes the objective status for Simulink
Design Verifier analysis modes.

Analysis Mode

Objective Status

Design error detection

“Dead Logic” on page 13-48

“Dead Logic under Approximation” on page 13-49
“Active Logic - Needs Simulation” on page 13-49
“Objectives Valid” on page 13-50

“Objectives Valid under Approximation” on page 13-50
“Objectives Falsified - Needs Simulation” on page 13-50

“Objectives Undecided Due to Division by Zero” on page 13-
56

“Objectives Undecided Due to Nonlinearities” on page 13-
56

“Objectives Undecided Due to Stubbing” on page 13-56
“Objectives Undecided” on page 13-57

“Objectives Undecided Due to Array Out of Bounds” on page
13-57

Simulink Design Verifier Reports

Analysis Mode

Objective Status

Test generation

“Objectives Satisfied” on page 13-51
“Objectives Satisfied - Needs Simulation” on page 13-52
“Objectives Unsatisfiable” on page 13-52

“Objectives Unsatisfiable under Approximation” on page 13-
52

“Objectives Undecided with Testcases” on page 13-53

“Objectives Undecided due to Runtime Error” on page 13-
55

“Objectives Undecided Due to Division by Zero” on page 13-
56

“Objectives Undecided Due to Nonlinearities” on page 13-
56

“Objectives Undecided Due to Stubbing” on page 13-56
“Objectives Undecided” on page 13-57

“Objectives Undecided Due to Array Out of Bounds” on page
13-57

13-47

13 Reviewing the Results

13-48

Analysis Mode

Objective Status

Property proving

“Objectives Valid” on page 13-53

“Objectives Valid under Approximation” on page 13-54
“Objectives Falsified with Counterexamples” on page 13-54
“Objectives Falsified - Needs Simulation” on page 13-55

“Objectives Undecided with Counterexamples” on page 13-
55

“Objectives Undecided due to Runtime Error” on page 13-
55

“Objectives Undecided Due to Division by Zero” on page 13-
56

“Objectives Undecided Due to Nonlinearities” on page 13-
56

“Objectives Undecided Due to Stubbing” on page 13-56
“Objectives Undecided” on page 13-57

“Objectives Undecided Due to Array Out of Bounds” on page
13-57

Design Error Detection Objectives Status

If you run a design error detection analysis, the Design Error Detection Objectives
Status section can include the following objective statuses:

* “Dead Logic” on page 13-48

* “Dead Logic under Approximation” on page 13-49

* “Active Logic - Needs Simulation” on page 13-49

* “Objectives Valid” on page 13-50

* “Objectives Valid under Approximation” on page 13-50

* “Objectives Falsified - Needs Simulation” on page 13-50

Dead Logic

The Dead Logic section lists the model items for which the analysis found dead logic.

This image shows the Dead Logic section of the generated analysis report for the
sldvdemo fuelsys logic simple model.

Simulink Design Verifier Reports

Dead Logic

Simulink Design Venfier found that these decision and condition outcomes cannot occur and are dead-logic in the model. Dead-logic m the
model can also be a side-effect of parameter configurations or input specified minimum maximum constraints

= Type Model Item [Description
Transttion "[speed==0 & press = zero_th._" from

“speed_norm’” to "speed_fail”

Transition "[m(Sens_Failure_Counter Mu_" from

Junction #2 to "Shutdown”

1 Condition "press = zera_thresh" can only be true

2 Decision

ltrigger expression can only be true

Dead Logic under Approximation

The Dead Logic under Approximation section lists the model items for which the
analysis found dead logic under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as Dead
Logic.

This image shows the Dead Logic under Approximation section of the generated
analysis report.

Dead Logic under Approximation

Simulink Design Verifier found that these decision and condition outcomes cannot occur and are dead-logic in the model
under the impact of approximations during analysis. Dead-logic in the model can also be a side-effect of parameter
configurations or input specified minimumm maximum constraints, or in rare cases, the approximations performend by
Simulink Design Verifer

s [Tvpe |)Iudel1tem Description ’T‘::;i‘(‘::c) Test Case
2 |Condition |cmlblockl Script. sequallALALeq) F IE [oa

Active Logic - Needs Simulation

The Active Logic - Needs Simulation section lists the model items for which the
analysis found active logic. To confirm the active logic status, you must run additional
simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as Active
Logic.

This image shows a portion of the Active Logic - Needs Simulation section of the
generated analysis report for the sldvdemo fuelsys logic simple model.

Active Logic - Needs Simulation

Simulink Design Verifier found that these decision and condition outcomes can occur and are active logic in the model. However. further
simulation 1s needed to confirm the Active logic status.

b [Type Model Ttem Deseription ‘;::?;::c) Test Case
5 [Decision |State "Oxygen_Sensor_Mode" Substate cxecuted "02_fail” B 1
4 IDecision State "Oxvgen Sensor_Mode" Substate executed "O2_normal' 27 1
S [Deciion [State "Oxveen Semsor Made® Substate cxecuted "02_warmup” b7 1
6 [Decision |State "Pressure Semsor Mods" Substate xecuted "press_fal" i 1

13-49

13 Reviewing the Results

13-50

Objectives Valid

The Objectives Valid section lists the design error detection objectives that the analysis
found valid. For these objectives, the analysis determined that the described design
erTors cannot occur.

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo design error detection model.

Objectives Valid

[Analysis

% |Type Model Item [Description Time (sec) |15 €75
5 [Overflow |Controller Sum Overflow B wa
18 |Overflow —g‘“‘;“:‘;‘l‘i‘gigf’““"ni‘ Discrete: |3 flow o wa
21 [Overflow |Coutvoller PI Coutoller Kp Overflow B wa
>4 [Overflow |Controller PI ControllerKpl Overflow B wa
27 [Overflow |CoutrellerPI Coutroller Sum Overflow B wa

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the design error detection
objectives that the analysis found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated
analysis report.

Objectives Valid under Approximation

[Analysis

Time (sec) Test Case

[Type Model Ttem Description

Division by
zero

12 Divide [Division by zero 140 In/a

Objectives Falsified - Needs Simulation

The Objectives Falsified - Needs Simulation section lists the design error detection
objectives for which the analysis found test cases that demonstrate design errors. To
confirm the falsified status, you must run additional simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as
Falsified.

Simulink Design Verifier Reports

This image shows the Objectives Falsified - Needs Simulation section of the generated
analysis report for the sldvdemo design error detection model.

Objectives Falsified - Needs Simulation

[Analysis

& [Tvpe [Model Item Description Time [Test Case
(sec)

5 |Overflow [Controller Sum) Overflow 20 2

11_[Overflow |Controller Suml Overflow g L

Test Objectives Status

If you run a test case generation analysis, the Test Objectives Status section can include
the following objective statuses:

* “Objectives Satisfied” on page 13-51

* “Objectives Satisfied - Needs Simulation” on page 13-52

* “Objectives Unsatisfiable” on page 13-52

* “Objectives Unsatisfiable under Approximation” on page 13-52
* “Objectives Undecided with Testcases” on page 13-53

When you analyze a model with Model coverage objectives set to Enhanced MCDC, the
software reports the detection status of model items. For more information, see
“Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-50.

Objectives Satisfied

The Objectives Satisfied section lists the test objectives that the analysis satisfied. The
generated test cases cover the objectives.

This image shows a portion of the Objectives Satisfied section of the generated analysis
report for the sldvdemo fuelsys logic simple example model.

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

[Analysis |Test
T Model It Descripti i)
pe odel Hem escription Time (sec) |Case
T |Decision |control logic Oxvgen Sensor Mode State: Substate cxccuted State "02_fail' |97 35
. State: Substate executed Stat
2 [Decision |control logic Oxvzen Senser Mode [SUbstife executed State 94 31
02_normal
. State: Substate executed Stat
3 [Decision |control logic Oxvzen_Sensor Mode e Susiale executed State 7 L
02_warmup
. State: Substate executed Stat
4 [Decision |control logic Pressure_Sensor_Mode [e Suhsale executed State 79 9
press_fail
. State: Substate executed Stat
Decision |control logic Pressure_Sensor_Mode [rate: Subsiale executed State 7 L
press_norm

13-51

13 Reviewing the Results

Objectives Satisfied - Needs Simulation

The Objectives Satisfied - Needs Simulation section lists the test objectives that the

analysis satisfied. To confirm the satisfied status, you must run additional simulations of
test cases.

In releases before R2017b, this section can include objectives that were marked as
Satisfied.

This image shows the Objectives Satisfied - Needs Simulation section of the generated
analysis report.

Objectives Satisfied - Needs Simulation

Sumulink Design Verifier found test cases that exercise these test objectives. However. further simulation 1s needed to confirm the
Satisfied status.

- Analysis
4 |Type |)Inﬂel Ttem [Description Timme (eacy [T €25
1 |Decision |Simulink Function [Function call executed. 11 i

Objectives Unsatisfiable

The Objectives Unsatisfiable section lists the test objectives that the analysis
determined could not be satisfied.

In releases before R2017b, this section can include objectives that were marked as
Proven Unsatisfiable.

This image shows the Objectives Unsatisfiable section of the generated analysis report
for the sldvdemo fuelsys logic simple example model.

Objectives Unsatisfiable

Simulink Design Verifier found that there does not exist any test case exercising these test objectives. This often indicates the presence of
dead-logic in the model. Other possible reasons can be inactive blocks in the model due to parameter configuration or test constraints such
as given using Test Condition blocks

- [Aualysis
s [Type Model Trem Description e ey [Test Case
y conirol logic Speed Semor Mode Tramsition: Condition 2. "press
61 |Condition | 04—0 & press = zero_th " rero_thresh” F 13 i
‘ Tramsifion: MCDC Transition trigger
control logic Speed_Sensor Mode ¢ ton trige
57 |Mcpe euitollonic Spead Sapsor Mo expression with Condition 2. "press < [13 o/
[speed==0 & press ~ zero_th zeto_thresh”
control
106 [Decision |logic Fueling Mode Fucl Disabled” |Transition: Transition trigger expression F |13 o/a

in(Sens_Farlure_Counter. Mu. "

Objectives Unsatisfiable under Approximation

The Objectives Unsatisfiable under Approximation section lists the test objectives
that the analysis determined could not be satisfied due to approximation during analysis.

13-52

Simulink Design Verifier Reports

In releases before R2017b, this section can include objectives that were marked as
Proven Unsatisfiable.

This image shows the Objectives Unsatisfiable under Approximation section of the
generated analysis report.

Objectives Unsatisfiable under Approximation

Simulink Destgn Venfier found that there does not exist any test case exercising these test objectives under the impact of
approximations during analysis. This often indicates the presence of dead-logic in the model. Other possible reasons can be
inactive blocks in the model due to parameter configuration or test constraints such as given using Test Condition blocks. In
rare cases, the approximations performed by Simulink Design Verifier can make objectives impossible to achieve.

[Analysis
Time (sec)
Decision |Chast_WithLengthGuard Box B State. Mloc F 21 na

& [Type Model Ttem Description Test Case

Objectives Undecided with Testcases

The Objectives Undecided with Testcases section lists the test objectives that are
undecided due to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as
Satisfied.

This image shows the Objectives Undecided with Testcases section of the generated
analysis report for the sldvApproximationsExample example model.

Objectives Undecided with Testcases

Simulink Design Verifier was not able to decide these objectives due to the impact of approximations during analysis

[Analysis

i Type Model Item \Description Time (sec) Test Case
1 Decision Switch 10, gical trigger input false (output 1s. 14 h
from 3rd mput port)

Proof Objectives Status
If you run a property-proving analysis, the Proof Objectives Status section can include:

* “Objectives Valid” on page 13-53

* “Objectives Valid under Approximation” on page 13-54

* “Objectives Falsified with Counterexamples” on page 13-54

* “Objectives Falsified - Needs Simulation” on page 13-55

* “Objectives Undecided with Counterexamples” on page 13-55

Objectives Valid

The Objectives Valid section lists the proof objectives that the analysis found valid.

13-53

13 Reviewing the Results

13-54

In releases before R2017b, this section can include objectives that were marked as
Proven Valid.

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo _debounce validprop example model.

Objectives Valid

— Analysis |
s Type Model Ttem Description ety |Counteresampte
| [Proof Verify OutputFourCorrect Objective: T 16 wa
objective
p [Proof Verify Output TourCorrect Objective: T 17 wa
objective

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the proof objectives that the
analysis found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as
Objectives Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated
analysis report.

Objectives Valid under Approximation

[Analysis

& [Type Model Item Description Time (sec)

(Counterexample

1 ool IMATLAB Funcrion dv.prove(-0) P [
objective

Objectives Falsified with Counterexamples

The Objectives Falsified with Counterexamples section lists the proof objectives that
the analysis disproved. The generated counterexample shows the violation of the proof
objective.

This image shows the Objectives Falsified with Counterexamples section of the
generated analysis report for the sldvdemo debounce falseprop example model.

Objectives Falsified with Counterexamples

Analysis

% Type Model Ttem Description Time (se) |Counterexample
1 |Assent Verify True Output/Assertion Assert 1 1

Simulink Design Verifier Reports

Objectives Falsified - Needs Simulation

The Objectives Falsified - Needs Simulation section lists the proof objectives that the
analysis disproved. To confirm the falsified status, you must run additional simulations of
counterexamples.

In releases before R2017b, this section can include objectives that were marked as
Objectives Falsified with Counterexamples.

This image shows the Objectives Falsified - Needs Simulation section of the generated
analysis report.

Objectives Falsified - Needs Simulation

Analysis

& [Type |Model tem Description Time (sec)

Counterexample|

1 [Proet Safety Properties MATLAB

abrtive [Puomeres sldv prove(implies(activeCond SeatBellcon)) 12 1

Objectives Undecided with Counterexamples

The Objectives Undecided with Counterexamples section lists the proof objectives
undecided due to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as
Falsified.

This image shows the Objectives Undecided with Counterexamples section of the
generated analysis report.

Objectives Undecided with Counterexamples

[Analysis

& Type Model Ttem Description Time (sec)

) /Counterexample

1 [Preof dproot Objective Objective: [1.2] 1 L

objective =

Objectives Undecided due to Runtime Error

For proof objectives and test objectives, the Objectives Undecided due to Runtime
Error section lists the undecided objectives during analysis due to a run-time error. The
run-time error occurred during simulation of a test case or counterexample.

In releases before R2017b, this section can include objectives that were marked as
Falsified or Satisfied.

This image shows the Objectives Undecided due to Runtime Error section of the
generated analysis report.

13-55

13 Reviewing the Results

13-56

Objectives Undecided due to Runtime Error

Simulink Design Verifier was not able to decide these objectives due to runtime errors that occured during simulation of the
test cases

- [Analysis

[Type Model Item Description Time (oac) | eS¢ Case
rator: p—"

1 |Condition [Relational Operator };‘ﬂ“““"‘“lol’“““’"‘“"‘“1 HRUES g3 1

Objectives Undecided Due to Division by Zero

For all types of objectives, the Objectives Undecided Due to Division by Zero section
lists the undecided objectives during analysis due to division-by-zero errors in the
associated model items. To detect division-by-zero errors before running further analysis
on your model, follow the procedure in “Detect Integer Overflow and Division-by-Zero
Errors” on page 6-26.

Objectives Undecided Due to Division by Zero
Simutink Design Verifier was not able to decide these objectives due to division by zero errors in the model

Analysis

Type Model Item Description Time (sey Test Case
1 |Decision Saturation imput > lower lmit F 0 na
2 Decision Saturation input > lower limit T 0 na
3 |Decision Saturation finprt >=upper limit F 0 n/a
4 Decision Satration finput >= upper limit T 0 na

Objectives Undecided Due to Nonlinearities

For all types of objectives, the Objectives Undecided Due to Nonlinearities section
lists the undecided objectives during analysis due to required computation of nonlinear
arithmetic. Simulink Design Verifier does not support nonlinear arithmetic or nonlinear
logic.

Objectives Undecided Due to Nonlinearities
Simuink Design Verifier was not able to decide these objectives due to the presence of noulinear arithmetic in the model

Analysis

4 [Type Model Item Description Time (o) 1o €3¢
30 |Decision [BasicRolMode/Inteerator integration result <= lower mit T |2 nla
32 |Decision [BasicRolMode/Tntegrator integration result >=upper limit T |2 nla

Objectives Undecided Due to Stubbing

For all types of objectives, the Objectives Undecided Due to Stubbing section lists
model items with undecided objectives during analysis due to stubbing. In releases before
R2013b, these objectives can include objectives that were marked as Objectives
Satisfied - No Test Case or Objectives Falsified - No Counterexample.

Simulink Design Verifier Reports

Objectives Undecided Due to Stubbing
Simulink Design Verifier was not able to decide these objectives due to stubbing.

Analysis Time|

Type Model Item Description (se0)
2 Decision Saturation input > lower limit F 12
3 Decision Saturation input > lower limit T 12
4 Decision Saturation input >= upper limit F 12
5 Decision Saturation input >= upper limit T 12

Objectives Undecided Due to Array Out of Bounds

For all types of objectives, the Objectives Undecided Due to Array Out of Bounds
section lists the undecided objectives during analysis due to array out of bounds errors in
the associated model items. To detect out of bounds array errors in your model, see
“Detect Out of Bound Array Access Errors” on page 6-38.

Objectives Undecided Due to Array Out of Bounds

Simulink Design Verifier was not able to decide these objectives due to array out of bounds in the model.

|Analysis

& [Type Model Item Description Time ooy | TSt Case
1 [Test objective [Lest Objective Objective. (3, Inf) 18 o
> |Test objective [Test Objective Objective: (-Inf 0 18 [wa

Objectives Undecided

For all types of objectives, the Objectives Undecided section lists the objectives for
which the analysis was unable to determine an outcome in the allotted time.

In this property-proving example, either the software exceeded its analysis time limit
(which the Maximum analysis time parameter specifies) or you aborted the analysis
before it completed processing these objectives.

Objectives Undecided

‘Simulink Design Verifier was not able to process these objectives with the current options.

L Analysis

| Type Model Item Description Time (seq) Commterexample

Proof . - i
1 R Verify Output FoutCorrect Objective: T -1 n'a

objective

Proof .
2 - Verify Output/ ToutCorrect Objective: T -1 na

objective

Model Items Chapter

The Model Items chapter of the report includes a table for each object in the model that
defines coverage objectives. The table for a particular object lists all of the associated

13-57

13 Reviewing the Results

13-58

objectives, the objective types, objective descriptions, and the status of each objective at
the end of the analysis.

The table for an individual object in the model looks similar to this one for the Discrete-
Time Integrator in the PI Controller subsystem of the sldvdemo cruise control
example model.

Controller/PI Controller/Discrete-Time Integrator

View

Test

H Tvpe Description Status Case
31 Decision i];t‘:iiﬁ:’ng ;esult = Satisfied 3
32 Decision ?;t‘:imﬂ {[esult = Satisfied §
33 Decision T;;iﬂ]?:?; rFesult = Satisfied 3
34 Decision ﬁ;[;ia]i?; rTesult = Satisfied 9

To highlight a given object in your model, click View at the upper-left corner of the table;
the software opens a new window that displays the object in detail. To view the details of
the test case that was applied to a specific objective, click the test case number in the last
column of the table.

Design Errors Chapter

If you perform design error detection analysis and the analysis detects design errors in
the model, the report includes a Design Errors chapter. This chapter summarizes the
design errors that the analysis falsified:

* “Table of Contents” on page 13-58
* “Summary” on page 13-58
* “Test Case” on page 13-59

Table of Contents

Each Design Errors chapter contains a table of contents. Each item in the table of
contents is a hyperlink to results about a specific design error.

Summary

The Summary section lists:

Simulink Design Verifier Reports

* The model item
* The type of design error that was detected (overflow or division by zero)
* The status of the analysis (Falsified or Proven Valid)

In the following example, the software analyzed the sldvdemo debounce falseprop
model to detect design errors. The analysis detected an overflow error in the Sum block
in the Verification Subsystem named Verify True Output.

Summary

Model Item: Verify True Output/Sum

Type: Overflow
Status: Falsified
Test Case

The Test Case section lists the time step and corresponding time at which the test case
falsified the design error objective. The Inport block raw had a value of 255, which
caused the overflow error.

Test Case

. 0-
Time 0.01

Step 1-2
raw 255

Test Cases Chapter

If you run a test generation analysis, the report includes a Test Cases chapter. This
chapter includes sections that summarize the test cases the analysis generated:

» “Table of Contents” on page 13-60

13-59

13 Reviewing the Results

13-60

* “Summary” on page 13-60

* “Objectives” on page 13-60

* “Generated Input Data” on page 13-61
* “Expected Output” on page 13-62

* “Combined Objectives” on page 13-62
* “Long Test Cases” on page 13-63

Table of Contents

Each Test Cases chapter contains a table of contents. Each item in the table of contents is
a hyperlink to information about a specific test case.

Summary

The Summary section lists:

* Length of the signals that comprise the test case

+ Total number of test objectives that the test case achieves

Summary
Length: 0.06 second (7 sample periods)
Objectives)
Satisfied:
Objectives

The Objectives section lists:

* The time step at which the test case achieves that objective.
* The time at which the test case achieves that objective.

* Alink to the model item associated with that objective. Clicking the link highlights the
model item in the Simulink Editor.

* The objective that was achieved.

Simulink Design Verifier Reports

Objectives
Step Time Model Item Objectives
- 0.06 Controller/PI Controller/Discrete-Time intesration result = upper limit T

Integrator

Generated Input Data

For each input signal associated with the model item, the Generated Input Data section
lists the time step and corresponding time at which the test case achieves particular test
objectives. If the signal value does not change over those time steps, the table lists the
time step and time as ranges.

Generated Input Data

. 0.01-
Time 0 0.05 0.06
Step |1 2-6 7
enable 1 1 1
brake |0 0 0
set 1 0 1
nc 1 1 -
dec 1 0 -
speed 97 0 0

Note The Generated Input Data table displays a dash (-) instead of a number as a signal
value when the value of the signal at that time step does not affect the test objective. In
the harness model, the Inputs block represents these values with zeros unless you enable
the Randomize data that does not affect outcome parameter (see “Randomize data
that do not affect the outcome” on page 15-67).

13-61

13 Reviewing the Results

Expected Output

If you select the Include expected output values on the Design Verifier > Results
pane of the Configuration Parameters dialog box, the report includes the Expected Output
section for each test case. For each output signal associated with the model item, this
table lists the expected output value at each time step.

Expected Output These output values are expected assuming that inputs that do not affect the test

objectives (- in the table above) are given a default value - 0 for numeric types, and default value for
enumerated types.

Time 0 0.010.02 0.03 [0.04 0.05 0.06
Step 1 2 3 4 3 6 7
throt 0 11.96 1.9898 2.01972.0497|2.0798 0.05
target|97/98 |99 100 101 102 |0

Combined Objectives

If you set the Test suite optimization option to CombinedObjectives (the default), the
Test Cases chapter may include individual information about many test cases.

13-62

Simulink Design Verifier Reports

Chapter 5. Test Cases

Table of Contents

Test Case 1
Test Case 2
Test Case 3
Test Case 4
Test Case 5
Test Case 6
Test Case 7
Test Case 8
Test Case 9

This section contains detailed information about each generated test case.

Test Case 1

Summary

Length: 0 second (1 sample period)
Objectives 12

Satisfied:

Long Test Cases

If you set the Test suite optimization option to LongTestcases, the Test Cases chapter
in the report includes fewer sections about longer test cases.

13-63

13 Reviewing the Results

Chapter 5. Test Cases

Table of Contents

Test Case 1

This section contains detailed information about each generated test case.

Test Case 1

Summary

Length: 0.26 second (27 sample periods)
Susteds 2

13-64

Properties Chapter

If you run a property-proving analysis, the report includes a Properties chapter. This
chapter includes sections that summarize the proof objectives and any counterexamples
the software generated:

» “Table of Contents” on page 13-64
* “Summary” on page 13-64
* “Counterexample” on page 13-65

Table of Contents

Each Properties chapter contains a table of contents. Each item in the table of contents is
a hyperlink to information about a specific property that was falsified.

Summary

The Summary section lists:

Simulink Design Verifier Reports

* The model item that the software analyzed

* The type of property that was evaluated

* The status of the analysis

In the following example, the software analyzed the

sldvdemo cruise control verification model for property proving. The analysis
proved that the input to the Assertion block named BrakeAssertion was nonzero.

Summary

Model Item: Safety Properties/BrakeAssertion
Property: Assert
Status: Falsified

Counterexample

The Counterexample section lists the time step and corresponding time at which the
counterexample falsified the property. This section also lists the values of the signals at
that time step.

Counterexample

: 0.02-
Time 00.01 0.04
Step 12 35
InputData.Actual speed 00 |0
[nputData.Switches.enable 11t 0
InputData.Switches.brake 00 |1
InputData.Switches.set 10 0
InputData.Switches.setlncDec.inc (1]1 0
InputData.Switches.setlncDec.dec00 0

13-65

13 Reviewing the Results

Simulink Design Verifier Log Files

w1 & s W

e e e e e e e
B T = T) B CPUR U O T S |

o

ST S T o R U T I ST I
(= T B S S N Y =

Every time you analyze a model, Simulink Design Verifier creates a log file. To view the
log file, click View Log in the Simulink Design Verifier log window.

The log file contains a list of the analysis results for each object in the model. The content
of the log file corresponds to the analysis results displayed in the log window during the
analysis.

20-Mar-2019 15:49:20

Checking compatibility for test generation: model 'sldvdemo cruise control'
Compiling model...done

Building model representation...done

20-Mar-201%9 15:49:42
'sldvdemo cruise control' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 20-Mar-2015% 15:49:42...

SATISFIED

Controller/Switch3

logical trigger input true (output is from 1st input port)
Inalysis Time = 00:00:12

SATISFIED

Controller/PI Controller

enakble logical wvalue true
Analysis Time = 00:00:12

SATISFIED

Controller/PI Controller/Discrete-Time Integrator
integration result >= upper limit false

Analysis Time = 00:00:12

13-66

Review Analysis Results

Review Analysis Results

In this section...

“View Active Results” on page 13-67
“Load Previous Results” on page 13-67

“Explore Results” on page 13-68

View Active Results

After analysis is complete, the Simulink Design Verifier Results Summary window opens,
showing different ways you can use the results. See “Explore Results” on page 13-68.

If you close the Results Summary window so you can fix the cause of any analysis errors
in your model, you might need to review the analysis results again. If you have not closed
your model since you ran the analysis, you can reopen the latest analysis results for your
model.

On the Design Verifier tab, click Results Summary to view the Results Summary
window. The Results Summary window reopens with the latest analysis results for your
model.

Load Previous Results

If you want to review results of a previous analysis on a model, you can load these results
from the analysis data file. On the Design Verifier tab, click Load Earlier Results and
browse to the data file that corresponds to the analysis you want to review. Click Results
Summary.

For more information on analysis data files, see “Simulink Design Verifier Data Files” on
page 13-10.

If you load analysis results for a model from a data file that was generated with a previous
version of that model, you might see unexpected effects. To avoid inconsistencies between
your model and analysis results data, when you load results for a model, choose a data file
that contains results from the same version of that model.

13-67

13 Reviewing the Results

Explore Results

With active or previous analysis results loaded in the Results Summary window, you can

perform the following tasks.

Task

For more information

Highlight the analysis results on the model.

“Highlighted Results on the Model” on page
13-2

Generate a detailed analysis report.

“Simulink Design Verifier Reports” on page
13-38

Create the harness model, or if the harness
model already exists, open it.

You will not be able to create the harness
model if:

* No design error objectives were falsified
* No test cases were generated

* No counterexamples were created

“Simulink Design Verifier Harness Models”
on page 13-18

View the data file.

“Simulink Design Verifier Data Files” on
page 13-10

View the log file. “Simulink Design Verifier Log Files” on
page 13-66

See Also

More About

. “Design Verifier Pane: Results” on page 15-64

. “Simulink Design Verifier Data Files” on page 13-10

. “Simulink Design Verifier Reports” on page 13-38

Analyzing Large Models and
Improving Performance

* “Sources of Model Complexity” on page 14-2

* “Analyze a Large Model” on page 14-3

* “Increase Allocated Memory for Analysis Report Generation” on page 14-8
* “Manage Model Data to Simplify the Analysis” on page 14-9

+ “Partition Model Inputs for Incremental Test Generation” on page 14-12
* “Bottom-Up Approach to Model Analysis” on page 14-14

+ “Extract Subsystems for Analysis” on page 14-15

* “Logical Operations” on page 14-21

* “Models with Large Verification State Space” on page 14-22

* “Counters and Timers” on page 14-23

* “Prove Properties in Large Models” on page 14-25

14 Analyzing Large Models and Improving Performance

Sources of Model Complexity

Some characteristics of Simulink models can cause problems during a Simulink Design
Verifier analysis in the following ways:

* Complexity of model inputs due to:
* Large number of inputs (The number of inputs can vary, depending on the
individual model.)
* Types of inputs (floating-point values, for example)
+ The way the inputs affect the model state and the objectives of the analysis
* Number of possible simulation paths through a model
* Portions of the model that cannot be reached
» Large counters in the model

The topics in “Complexity Reduction” describe techniques designed to reduce the impact
of this complexity and achieve the best performance from Simulink Design Verifier.

Most of these techniques focus on test generation for large models. However, you can use
many of them to detect design errors or prove the properties of a large model and
generate counterexamples when a property is disproved. In addition, “Prove Properties in
Large Models” on page 14-25 describes specific techniques for proving properties in a
large model.

14-2

Analyze a Large Model

Analyze a Large Model

In this section...

“Types of Large Model Problems” on page 14-3

“Summarize Model Hierarchy and Compatibility” on page 14-4
“Use the Default Parameter Values” on page 14-4

“Modify the Analysis Parameters” on page 14-6

“Use the Large Model Optimization” on page 14-6

“Stop the Analysis Before Completion” on page 14-6

Types of Large Model Problems

The Simulink Design Verifier software may encounter some of these problems when
analyzing a large model:

* Unsatisfiable objectives — The software proved there are no test cases that exercise
these test objectives, and did not generate any test cases.

* Undecided objectives — The software was not able to satisfy or falsify these objectives.

* Objectives with errors — This problem usually occurs when a model component uses
nonlinear arithmetic, which can affect a test objective.

» Cannot complete the analysis in the time allotted — This problem may indicate an area
of your model where the software encountered problems, or you may need to increase
value of the Maximum analysis time parameter.

* Analysis hangs — If the number of objectives processed remains constant for a
considerable length of time, the software has likely encountered complexity between
the model and its objectives.

* Does not achieve a high percentage of model coverage — When you run the test cases
on the harness model, the percentage of model coverage is insufficient for your
design.

The next few sections describe the initial steps to take when analyzing a large model.

Although these steps address test generation, you can use a similar approach when
detecting design errors or proving properties in a model.

14-3

14

Analyzing Large Models and Improving Performance

Summarize Model Hierarchy and Compatibility

You can use the Test Generation Advisor to summarize test generation compatibility,
condition and decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection.
You can use the results to better understand your model, particularly large models,
complex models, or models for which you are uncertain of their compatibility with
Simulink Design Verifier. For example, you can:

» Identify incompatibilities with test case generation.

* Identify complex components that might be time-consuming to analyze.

» Determine instances of dead logic.

* Get a summary of the component hierarchy.

* Get recommended test generation parameters.

To access the Test Generation Advisor, on the Design Verifier tab, in the Mode section,
click Test Generation. In the Prepare section, click Advisor. For more information see
“Use Test Generation Advisor to Identify Analyzable Components” on page 7-25.

Use the Default Parameter Values

When you generate test cases, you should generally begin by analyzing the model using
the Simulink Design Verifier default parameter values:

1 Check to see if your model is compatible with Simulink Design Verifier, as described
in “Check Model Compatibility” on page 3-2.

2 Using the default parameter values, analyze the model. The following table lists the
default values for parameters in the Configuration Parameters dialog box that you
might change when analyzing large models.

Parameter Default Value Description

Maximum analysis 300 (seconds) If the analysis does not finish within the

time (s) specified time, the analysis times out and
terminates.

14-4

Analyze a Large Model

Parameter Default Value Description
Test suite CombinedObjectives |Generates test cases that address more than
optimization (Nonlinear one test objective, as with the

extended) CombinedObjectives option, but with

improved support for nonlinear arithmetic.
Each test case tends to include many time
steps.

Model coverage Condition/Decision |Generates test cases that achieve condition
objectives and decision coverage.

3

Review the following information in the Simulink Design Verifier log window while
the analysis runs:

* Number of objectives processed — How many objectives were processed? Did the
analysis hang after processing a certain number of objectives? The answers to
these questions might give you a clue about where a problem might lie.

* Number of objectives satisfied/Number of objectives falsified — Which objectives
were falsified?

* Time elapsed — Did the analysis time out, or did it finish within the specified
maximum analysis time?

When the analysis completes, you can highlight the results in the model and
individually review the analysis of each model object, as described in “Highlighted
Results on the Model” on page 13-2. You can also generate and review the Simulink
Design Verifier HTML report. This report contains links to the model elements for
satisfied and falsified objectives so you can see what portions of the model might
have problems. For more information, see “Simulink Design Verifier Reports” on page
13-38.

For a test-generation analysis, if all the test objectives have been satisfied, run the
test cases on the harness model to determine model coverage.

If model coverage is enough for your design, you do not need to do anything else. If
the coverage is insufficient, take additional steps to improve the analysis
performance, as described in the following sections.

Note A large percentage of falsified objectives and poor model coverage often indicate
that you need to change model parameter values to get complete coverage. This can
occur when you have tunable parameters in Constant blocks that are connected to
enabled subsystems or to the trigger inputs of Switch blocks. In these situations,

14-5

14 Analyzing Large Models and Improving Performance

14-6

configure Simulink Design Verifier parameter support as described in the example
“Specify Parameter Constraint Values for Full Coverage” on page 5-12.

Modify the Analysis Parameters

If the analysis satisfied most but not all of the objectives, try the following steps:

1 Increase the Maximum analysis time parameter. This gives the analysis more time
to satisfy all the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting this option
generates only test cases that achieve decision coverage. These test cases are a
subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are still not satisfactory, try the techniques described in the following
sections.

Use the Large Model Optimization

Set the Test suite optimization parameter to LargeModel or LargeModel
(Nonlinear Extended), and rerun the Simulink Design Verifier analysis.

The large model optimization strategies are designed for large, complex models. The
LargeModel (Nonlinear Extended) strategy includes improved support for
nonlinear arithmetic. These two strategies may or may not improve the results of your
analysis enough to fully test your design.

If you have outstanding objectives you want the software to generate, continue with the

following techniques.

Stop the Analysis Before Completion

Watch the Objectives processed value in the log window. If about 50 percent of the
Maximum analysis time parameter has elapsed and this value does not increase, the
model analysis may have trouble processing certain objectives. If the analysis does not
progress, take the following steps:

1 Click Stop in the log window.

Analyze a Large Model

A dialog box appears, informing you that the analysis was aborted and asking you if
you still want to produce results.

Click Yes to save the results of the analysis so far.

The log window lists the following options, depending on which analysis mode you
ran:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Click Generate detailed analysis report.

In the HTML report, review the following sections to identify the model elements that
are causing problems:

* Objectives Undecided when the Analysis was Stopped

* Objectives Producing Errors

Review the model elements that have undecided objectives or objectives with errors
to see if any of the following problems are present. Consult the respective
documentation for specific techniques to improve the analysis.

Problem in your model More information

Floating-point inputs “Manage Model Data to Simplify the
Analysis” on page 14-9

Nonlinear operations * “Bottom-Up Approach to Model
Analysis” on page 14-14

» “Logical Operations” on page 14-
21

Large state spaces “Models with Large Verification State
Space” on page 14-22

Large timers and time delays “Counters and Timers” on page 14-23

14-7

14 Analyzing Large Models and Improving Performance

Increase Allocated Memory for Analysis Report
Generation

14-8

When you analyze a model with a large root-level input signal count, you may encounter
an insufficient memory error when Simulink Design Verifier is generating the report.

When this occurs, you need to increase the amount of memory the Sun™ Java® Virtual
Machine (JVM™) software can allocate. For steps on how to increase this memory, see
“Increase the MATLAB JVM Memory Allocation Limit” (MATLAB Report Generator).

Manage Model Data to Simplify the Analysis

Manage Model Data to Simplify the Analysis

In this section...

“Simplify Data Types” on page 14-9
“Constrain Data” on page 14-9

Simplify Data Types

One way to simplify your model is to use for the designated signal data type a data type
requiring the least amount of space for the expected data. For example, do not use an int
data type for Boolean data, because only one bit is required for Boolean data.

In another example, suppose you have a Sum block with two inputs that are always
integers between -10 and 10. Set the Output data type parameter to int8, rather than
int32 or double.

To display the signal data types, on the Debug tab, click Information Overlays > Port
Data Type.
Constrain Data

Another effective technique for reducing complexity is to restrict the inputs to a set of
representative values or, ideally, a single constant value. This process, called
discretization, treats the input as if it were an enumeration. Discretization allows you to
handle nonlinear arithmetic from multiplication and division in the simplest way possible.

The following model has a Product block feeding a Saturation block.

Cut1

Saturation

Product

14-9

14 Analyzing Large Models and Improving Performance

14-10

The Simulink Design Verifier software generates errors when attempting to satisfy the
upper and lower limits of the Saturation block, because the software does not support
nonlinear arithmetic. To work around these errors, restrict one of the inputs to a set of
discrete values.

Identify discrete values that are required to satisfy your testing needs. For example, you
may have an input for model speed, and your design contains paths of execution that are
conditioned on speed above or below thresholds of 80, 150, 600, and 8000 RPM. For an
effective analysis, constrain speed values to be 50, 100, 200, 1000, 5000, or 10000 RPM
so that every threshold can be either active or inactive.

If you need to use more than two or three values, consider specifying the constrained
values using an expression like

num2cell(minval:increment:maxval)

Using the previous example model, restrict the second input (y) to be either 1, 2, 5, or 10
using the Test Condition block as shown in the following model. The Simulink Design
Verifier software produces test cases for all inputs.

1281 Dt 1
i O Saturation

Product

You can also constrain signals that are intermediate or output values of the model.
Constraining such signals makes it easier to work around multiplication or division inside
lower level subsystems that do not depend on model inputs.

Note Discretization is best limited to a small number of inputs (less than 10). If your
model requires discretization of many inputs, try to achieve model coverage through

Manage Model Data to Simplify the Analysis

successive simulations, as described in “Partition Model Inputs for Incremental Test
Generation” on page 14-12.

Test Condition blocks do not need to be placed exactly on the inputs. In deciding where to
place the constraints in your model, consider the following guidelines:

Favor constraints on the input values because the software can process inputs easier.

If you need to place constraints on both the input and the output, for example, to avoid
nonlinear arithmetic, one of the constraints should be a range such as [minval
maxval]. The software first tests the values at both ends of the range and can return
a test case, even if the underlying calculations are nonlinear.

Make sure that constraints at corresponding input and output points are not
contradictory. Do not constrain the output signals to values that are not achievable
because of the constraints on the input values.

Avoid creating constraints that contradict the model. Such contradictions occur when
a constraint can never be satisfied because it contradicts some aspect of the model or
another constraint. Analyzing contradictory models can cause Simulink Design Verifier
to hang.

The next model is a simple example of a contradictory model. The second input to the
Multiply block is the constant 1, but the Test Condition block constrains it to a value of
2, 5, or 10. The analysis cannot achieve all the test objectives in this model.

D

X

« " —D
25100 - Cutl
Saturation

Constant

Product

When you work with large models that have many multiplication and division
operations, you may find it easier to add constraints to all of the floating-point inputs
rather than to identify the precise set of inputs that require constraints.

14-11

14 Analyzing Large Models and Improving Performance

Partition Model Inputs for Incremental Test Generation

14-12

As described in “Constrain Data” on page 14-9, you can constrain the values of model
inputs using the Simulink Design Verifier Test Condition block.

Like other Simulink parameters, constraint values can be shared across several blocks by
referencing a common workspace variable; you can initialize constraint values using
MATLAB commands. If you have several inputs related to speed, such as desired speed,
measured speed, and average speed, you might choose to constrain all of them to the
same set of values.

As an advanced technique for experienced MATLAB programmers, you can use
parameterized constraints and successive runs of Simulink Design Verifier to implement
an incremental test-generation technique:

1 Partition model inputs so that some are held constant, some are constrained to sets of
constants using the Test Condition block, and some can have any value.

2 Generate test cases and run those test cases to collect model coverage.
Choose new values and partition the inputs with these new values.

4 Generate test cases for missing coverage using the sldvgencov function and the
current test coverage.

Note To view an example of extending an existing test suite to achieve missing
model coverage, enter the following at the command prompt in the MATLAB
Command Window:

showdemo('sldvdemo incremental test generation')

5 Repeat steps 3 and 4 until you have achieved the desired coverage.

Partition the model inputs that enable further simplification when an analysis runs.
Consider the following model, which has three mutually independent enabled subsystems:
* Normal Mode

* Shutdown Mode

* Failure Mode

Partition Model Inputs for Incremental Test Generation

Y

r

¥

I Int n
o Court 1
B In2
Normal Mode
==z
r
o Int n
B In2 Ot 1
B In3

Y

¥

Shutdown Mode

r

In¥

Ini
In2

In3

n

Ot 1

¥

Failure Mede

Merge

Out1

Merge

You can incrementally generate test cases for each subsystem by constraining the first
input to a constant value before running an analysis. In this way, as you create test cases
for each subsystem, the software ignores the complexity of the other two subsystems.

14-13

14 Analyzing Large Models and Improving Performance

Bottom-Up Approach to Model Analysis

14-14

Simulink Design Verifier software works most effectively at analyzing large models using
a bottom-up approach. In this approach, the software analyzes smaller model components
first, which can be faster than using the Large model test suite optimization.

The bottom-up approach offers several advantages:

It allows you to solve the problems that slow down error detection, test generation, or
property proving in a controlled environment.

Solving problems with small model components before analyzing the model as a whole
is more efficient, especially if you have unreachable components in your model that
you can only discover in the context of the model.

You can iterate more quickly—find a problem and fix it, find another problem and fix it,
and so on.

If one model component has a problem—for example, a component is unreachable in
simulation—that can prevent the software from generating tests for all the objectives
in a large model.

Try this workflow with your large model:

1

Use the Test Generation Advisor to identify analyzable model components and
generate tests for these components. For more information, see “Use Test Generation
Advisor to Identify Analyzable Components” on page 7-25.

Fix any problems by adding constraints or specifying block replacements.

After you analyze the smaller components, reapply the required constraints and
substitutions to the original model. Analyze the full model.

When you finish a bottom-up analysis, you have a top-level model that Simulink
Design Verifier can analyze quickly.

Extract Subsystems for Analysis

Extract Subsystems for Analysis

In this section...

“Overview of Subsystem Extraction” on page 14-15

“sldvextract Function” on page 14-15

“Structure of the Extracted Model” on page 14-16

“Analyze Subsystems That Read from Global Data Storage” on page 14-16

“Analyze Function-Call Subsystems” on page 14-18

Overview of Subsystem Extraction

If you have a large model that slows down your analysis or has unreachable objectives,
you may want to analyze atomic subsystems or Stateflow atomic subcharts using Simulink
Design Verifier. This technique allows you to implement a bottom-up approach to
analyzing a large model, as described in “Bottom-Up Approach to Model Analysis” on
page 14-14.

When you analyze a subsystem or atomic subchart, the software:

* Extracts the subsystem or subchart into a new model.

» Ifrequired, adds blocks to the newly created model that replicate the execution
context of the subsystem or subchart within its parent model.

* Analyzes the extracted model and produces results.

Note The Simulink Design Verifier software can only analyze atomic subsystems and
atomic subcharts.

For more information about analyzing subsystems, see “Generate Test Cases for a
Subsystem” on page 7-23.

For more information about analyzing atomic subcharts, see “Analyze a Stateflow Atomic
Subchart” on page 1-26.

sldvextract Function

The sldvextract function allows you to extract subsystems and atomic subcharts for
component verification. By extracting the subsystem or atomic subchart, you can verify

14-15

14 Analyzing Large Models and Improving Performance

14-16

the component in isolation from the rest of the system, allowing you to test the
component algorithm. For more information, see “What Is Component Verification?” on
page 10-2 and “Functions for Component Verification” on page 10-4.

Structure of the Extracted Model

When you analyze a subsystem or atomic subchart, Simulink Design Verifier creates a
new model that contains the subsystem or atomic subchart, and any input and output
ports that correspond to the ports connected to the original subsystem. The software
assigns the following properties to the ports in the new model, as determined by
compiling the original model:

* Data types

* Sample rates

* Signal dimensions

The software names the new model subsystem name, where subsystem name is the
name of the subsystem.

The next sections provide examples of how Simulink Design Verifier extracts and analyzes
subsystems.

Analyze Subsystems That Read from Global Data Storage

A data store is a repository to which you can write data, and from which you can read
data, without having to connect an input or output signal directly to the data store.

You create a data store using a Data Store Memory block or a Simulink.Signal object.
The Data Store Memory block or Simulink.Signal object represents the data store and
specifies its properties. Every data store must have a unique name.

When you analyze a subsystem that reads data from a data store that is accessed outside
the subsystem, the analysis:

* Adds a Data Store Memory block to the new model.

* Adds an input port that writes to the data store. Since the input writes to the data
store, the data can have any values (within the specified data type) for the purpose of
the Simulink Design Verifier analysis.

Extract Subsystems for Analysis

If the data store specifies minimum and maximum values, those values are assigned to
the new input port.

The following example analyzes a subsystem in the s1 subsys fcncall8 example
model:

1

Open the sl _subsys fcncall8 example model:

sl subsys fcncall8

This model defines a data store A, from which the atomic subsystem Reader reads
data using a Data Store Read block.

Right-click the Reader subsystem and select Design Verifier > Generate Tests for
Subsystem.

The Simulink Design Verifier log window shows that the software extracts the
subsystem into a new model named Reader, analyzes the extracted model, and offers
you the choice of which results to produce.

Open the new Reader model that the software created in <current folder>
\sldv_output\Reader.

¥

funitiond)

outip——

read
Reader

Data Store
Memary H—

The new Inport block A writes into the data store, which is used by the subsystem
Reader in the new model.

14-17

matlab:sl_subsys_fcncall8

14 Analyzing Large Models and Improving Performance

Analyze Function-Call Subsystems

A function-call subsystem is a triggered subsystem whose execution is determined by
logic internal to a C MEX S-function instead of by the value of a signal. Function-call
subsystems are always atomic.

Note For more information, see “Implement Function-Call Subsystems with S-Functions”
(Simulink).

When you analyze a model with a function-call subsystem, Simulink Design Verifier
creates a new model with an Inport block that mimics the trigger and a copy of the
subsystem. The software then analyzes the new model.

The following example analyzes a function-call subsystem in the sl _subsys fcncall2
model:

1 Openthe sl subsys fcncall2 example model:
sl subsys fcncall2

This model contains a Stateflow chart named Chart that triggers the function-call
subsystem f.

2 Right-click the f subsystem and select Design Verifier > Generate Tests for
Subsystem.

The software extracts the subsystem into a new model named f0, analyzes the
extracted model, and produces results.

14-18

matlab:sl_subsys_fcncall2

Extract Subsystems for Analysis

Simulink Design Verifier Results Summary: f0 >

Progress |

Objectives processed 5/5

Satisfied 5
Unsatisfiable 0
Elapsed time 0:11

Test generation completed normally.
5/5 objectives are satisfied.

Results:

* Highlight analysis results on model

* \View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: f0_sldvdata.mat
in folder: H:\Documents\MATLAB \sldv_outputhfo

View Log Close

Open the f0 model that the software created in <current folder>\sldv_output
\f0.

The Inport block and the new subsystem block mimic the trigger for the function-call
subsystem f in the new 0 model.

14-19

14 Analyzing Large Models and Improving Performance

f !

1 :
Signal spec. i

and roufing i

k 4

i)

f

Signal spec.
and routing

14-20

Logical Operations

Logical Operations

If you have a Simulink model with both logical and arithmetic operations, consider
analyzing only the logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic of floating-
point numbers, as occurs with multiplication or division, unless one of the multiply
operands or the divisor is a constant.

To simplify models that contain integers or floating-point numbers, the software maps the
model computations into expressions of Boolean variables. For example, the software
might represent an eight-bit number as a set of eight Boolean values, with one for each
digit. It might represent a bit-wise OR operation of two eight-bit integers as eight separate
logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and this complexity
increases when the software performs such mapping. The software handles models with
predominantly logical signals more efficiently than it does those with large integer or
floating-point signals.

Note Simulink Design Verifier software can handle floating-point inputs when their
values impact the design through linear inequalities such as x < y ora > 0.

In addition, input complexity can result from certain cast operations. For example, casting
a double to an int8 can introduce a non-linearity in certain situations.

14-21

14 Analyzing Large Models and Improving Performance

Models with Large Verification State Space

14-22

Persistent design variables (variables that are assigned in one time step and used in a
later time step during simulation) affect the complexity of analysis in much the same way
as input complexity. You can use one or more of the following techniques to simplify the
complexity of the state space you want to search:

* Apply constraints to input signals that are delayed.

* Constrain the inputs to states that are contained within conditionally executed
subsystems.

* Limit the number of test case steps by setting the Maximum test case step
parameter to 20.

* Increase the sample time for part or all of the model. (This procedure is similar to
reducing timer thresholds, as described in “Counters and Timers” on page 14-23.) A
test case that you generate at a lower sample rate often has similarities to the test
case with a high sample rate that you need to achieve an objective.

* Use tight variable types where ever possible. For example, if a flag with values of 0 or
1 only is defined as a double, restrict the type to Boolean.

States that are computed from previous state values present a special challenge. For
example, if you want to restrict the integrator value in a PID controller, you can only use a
set of values that includes all reachable values from the initial value. Otherwise, the input
must be forced to 0. Neither of these limitations is practical and would probably make the
analysis less complete.

Alternatively, you can use existing simulation data to help satisfy your testing needs. If
you have existing test data, run it on your model and collect model coverage. For an
example of extending an existing test suite to achieve missing model coverage, see
Extend an Existing Test Suite.

Counters and Timers

Counters and Timers

Simulink Design Verifier analysis searches through sequences of states to find input
values that drive the analysis to reach a state that satisfies an objective. Each counter
value or timer step corresponds to a different state, so the presence of long timers or
counters can dramatically increase the size of the state representation. Since analysis
complexity depends on the size of the state representation, you must give special
consideration to counters and timers in your model to avoid over complicating Simulink
Design Verifier analysis.

Note For the purposes of Simulink Design Verifier analysis, the term configuration refers
to a set of values for all the persistent information in your model.

The search process investigates all configurations that can be reached in a single timer
step before considering any of the configurations that can be reached in two timer steps.
Likewise, the search investigates all configurations that can be reached in two timer steps
before it considers any configuration that requires three or more timer steps, and so on.
The number of timer steps required to exhaust the counter directly affects the number of
states that the analysis needs to search. Models that contain time delays, such as
countdown timers, complicate the analysis by forcing the search to span a large number
of states.

You may see similar effects when systems use extensive averaging and filtering to delay
the response to a change in inputs. Any aspect of the design that delays the response
causes the test sequences to contain more timer steps, resulting in longer test cases that
are more difficult to identify.

Some basic techniques you can use to improve analysis performance in models with
counters or timers include the following:

* Choose very small values for time delays. A system with a logical error when a time
delay is set to 2000 steps usually demonstrates that error if the time delay is changed
to 2 steps. If your system has several delays, choose small but unique values for each
of them so that your delays are progressively satisfied.

* Make the initial values of counters and timers parameter values that Simulink Design
Verifier can modify. The software finds initial values that allow shorter test cases to
exceed thresholds. For more information, see “Parameter Constraint Values” on page
5-2.

14-23

14 Analyzing Large Models and Improving Performance

14-24

Choose higher frequency cutoffs for filters and fewer samples to average to minimize
filtering delays.

Some more advanced techniques you can use to improve analysis performance in models
with counters or timers include the following:

Use sldvtimer to identify timer patterns that can be optimized for Simulink Design
Verifier test generation.

Use an existing test case or set of test cases that exhausts the counter or timer, and
extend those test cases to create a full test suite. For more information, see Defining
and Extending Existing Test Cases.

Prove Properties in Large Models

Prove Properties in Large Models

Property proving uses the same underlying techniques as design error detection and test
generation and suffers from the same performance limitations. However, unlike design
error detection or test generation, you often cannot simplify the problem without
compromising the validity of the results.

You can quickly prove simple proof objectives that are not affected by model dynamics.
However, a thorough proof requires that Simulink Design Verifier search through all
reachable configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model completely
often make an exhaustive proof impractical.

There are two techniques you can use to improve the performance of property proving in
a large model:

In this section...
“Find Property Violations While Designing Your Model” on page 14-25

“Combine Proving Properties and Finding Proof Violations” on page 14-26

Find Property Violations While Designing Your Model

Simulink Design Verifier software offers a strategy that quickly identifies property
violations in larger, more complicated models. While designing your model, analyze your
model using this strategy so that you can fix any property violations before finalizing your
design.

To identify property violations of a model, on the Design Verifier > Property Proving
pane of the Configuration Parameters dialog box, specify the value of the Strategy
parameter as FindViolation. When you use this strategy, the Maximum violation
steps parameter becomes active so that you can specify an upper bound for the number
of time steps in the search.

During analysis, the software searches only for property violations within the specified
number of time steps. By identifying and fixing the property violations first, you improve
the performance of a property-proving analysis that uses the Prove strategy.

If a violation is not detected, it is impossible to violate the property with any input
sequence having fewer time steps than the specified limit. However, you cannot prove

14-25

14 Analyzing Large Models and Improving Performance

14-26

that the property is true because there might be a counterexample within more time steps
than the specified limit.

Combine Proving Properties and Finding Proof Violations

Use the following technique for proving properties in large model. This technique
combines proving and searching for violations:

1

On the Design Verifier > Property Proving pane, set the Strategy parameter to
Prove.

On the Design Verifier pane, use a relatively short value for the Maximum analysis
time parameter, such as 5-10 minutes. If trivial counterexamples exist — or if your
properties do not depend on model dynamics—the analysis should complete in that
amount of time.

Change the Strategy parameter to FindViolation, and choose a small bound for
the Maximum violation steps parameter, such as 4, 5, or 6. If your properties have
simple counterexamples, the software should discover them.

If you do not find any violations with a small bound, increase the bound and look for
longer counterexamples.

a Increase the bound in several increments, and observe the processing time and
memory consumption. System resources might limit the length of violation that
can be searched.

b In addition, consider the dynamics of your model and the number of time steps
required to transition between an arbitrary pair of configurations. If you choose
too large a bound, the violation search can be more complex than the unbounded
proof.

If you can run violation searches with relatively large bounds, e.g., 30-50 time steps,
switch back to the Prove strategy, and use a longer time limit, such as several hours.

Simulink Design Verifier
Configuration Parameters

* “Simulink Design Verifier Options” on page 15-2

* “Design Verifier Pane”
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:
* “Design Verifier Pane:

on page 15-12

Block Replacements” on page 15-24
Parameters” on page 15-27

Test Generation” on page 15-37
Design Error Detection” on page 15-52
Property Proving” on page 15-59
Results” on page 15-64

Report” on page 15-74

15 simulink Design Verifier Configuration Parameters

Simulink Design Verifier Options

15-2

In this section...

“Options in Configuration Parameters Dialog Box” on page 15-2
“Design Verification Options Objects” on page 15-2

“Command-Line Parameters for Design Verification Options” on page 15-2

Options in Configuration Parameters Dialog Box

You can set options for Simulink Design Verifier analysis in the Configuration Parameters
dialog box. To view the options, open the Design Verifier tab. In the Prepare section,
from the drop-down menu for the mode settings, click Settings. The Design Verifier
pane of the model configuration parameters opens.

By default, options for Simulink Design Verifier do not appear in the Configuration
Parameters dialog box. When you open the Design Verifier tab, Simulink Design Verifier
associates its default options with the model. After you save the model, you can access
options for Simulink Design Verifier directly from the Configuration Parameters dialog
box.

See “Configuration Parameters Dialog Box Overview” (Simulink) for more information

about working with this interface.

Design Verification Options Objects

You can use the sldvoptions function to specify Simulink Design Verifier options at the
command line.

To view in the MATLAB Command Window the design verification options associated with
a Simulink model, use the following syntax:

opts = sldvoptions('model name');
get(opts)

Command-Line Parameters for Design Verification Options

Use the following parameters to configure the behavior of Simulink Design Verifier. Use
the get param and set param functions to retrieve and specify values for these
parameters programmatically.

Simulink Design Verifier Options

For each parameter, the Location column indicates where you can set its value in the
Configuration Parameters dialog box. The Values column shows the type of value
required, the possible values (separated with a vertical line), and the default value

(enclosed in braces).

Parameter

Location

Values

DVAbsoluteTolerance

Set by the Floating point
absolute tolerance
parameter on the Design
Verifier > Test Generation
pane.

double {'1.0e-05"}

DVAssertions

Set by the Assertion blocks
parameter on the Design
Verifier > Property Proving
pane.

"EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

DVAutomaticStubbing

Set by the Automatic
stubbing of unsupported
blocks and functions
parameter on the Design
Verifier pane.

{'on'} | 'off'

DVBlockReplacement

Set by the Apply block
replacements parameter on
the Design Verifier > Block
Replacements pane.

‘on' | {'off'}

DVBlockReplacement-
ModelFileName

Set by the File path of the
output model parameter on
the Design Verifier > Block
Replacements pane.

character array {' $ModelName
$ replacement'}

DVBlockReplacement -
RuleslList

Set by the List of block
replacement rules parameter
on the Design Verifier >
Block Replacements pane.

character array
{'<FactoryDefaultRules>"'}

DVCodeAnalysisExtra-
Options

Set by the Additional options
for S-Functions parameter on
the Design Verifier pane.

character array {"' '}

15-3

15 simulink Design Verifier Configuration Parameters

Parameter

Location

Values

DVCoverageDataFile

Set by the Coverage data file
parameter on the Design
Verifier > Test Generation
pane.

character array {"' '}

DVCovFilter

Set by the Ignore objectives
based on filter parameter on
the Design Verifier pane.

‘on' | {'off'}

DVCovFilterFileName

Set by the Filter file
parameter on the Design
Verifier pane.

character array {"' '}

DVDataFileName

Set by the Data file name
parameter on the Design
Verifier > Results pane.

character array { ' $ModelName
$ sldvdata'}

DVDesignMinMaxCheck

Set by the Specified
minimum and maximum
value violations parameter
on the Design Verifier >
Design Error Detection
pane.

‘on' | {'off'}

DVDesignMinMax -
Constraints

Set by the Use specified
input minimum and
maximum values parameter
on the Design Verifier pane.

{"on'} | 'off’

DVDetectActivelogic

Set by Identify active logic
on the Design Verifier >
Design Error Detection
pane.

‘on' | {'off'}

DVDetectDeadlLogic

Set by Dead logic on the
Design Verifier > Design
Error Detection pane.

‘on' | {'off'}

DVDetectDivisionByZero

Set by the Division by zero
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

15-4

Simulink Design Verifier Options

Parameter Location Values
DVDetectDSM- Set by the Data store access |'on' | {'off'}
AccessViolations violations parameter on the
Design Verifier > Design
Error Detection pane.
DVDetectInfNaN Set by the Non-finite and ‘on' | {'off'}
NaN floating-point values
parameter on the Design
Verifier > Design Error
Detection pane.
DVDetectIntegerOverflow |Set by the Integer overflow |{'on'} | 'off’

parameter on the Design
Verifier > Design Error
Detection pane.

DVDetectOutOfBounds

Set by the Out of bound
array access parameter on
the Design Verifier > Design
Error Detection pane.

{'on'} | 'off!'

DVDetectSubnormal

Set by the Subnormal
floating-point values
parameter on the Design
Verifier > Design Error
Detection pane.

‘on' | {'off'}

DVDisplayReport

Set by the Display report
parameter on the Design
Verifier > Report pane.

{"on'} | 'off’

DVDisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test objectives
parameter on the Design
Verifier pane.

‘on' | {'off'}

DVExtendExistingTests

Set by the Extend existing
test cases parameter on the
Design Verifier > Test
Generation pane.

‘on' | {'off'}

15-5

15 simulink Design Verifier Configuration Parameters

Parameter

Location

Values

DVExistingTestFile

Set by the Data file parameter
on the Design Verifier > Test
Generation pane.

character array {"' '}

DVHarnessModelFileName

Set by the Harness model

file name parameter on the
Design Verifier > Results

pane.

character array {' $ModelName
$ harness'}

DVHarnessSource

Set by the Harness source
parameter on the Design
Verifier > Results pane.

{'Signal Builder'} |
'Signal Editor'

DVIgnoreCovSatisfied

Set by the Ignore objectives
satisfied in existing
coverage data parameter on
the Design Verifier > Test
Generation pane.

‘on' | {'off'}

DVIgnoreExistTest-
Satisfied

Set by the Ignore objectives
satisfied by existing test
cases parameter on the
Design Verifier > Test
Generation pane.

{on'}| 'off'

DVIncludeRelational-
Boundary

Set by the Include relational
boundary objectives
parameter on the Design
Verifier > Test Generation
pane.

{"on'} | 'off’

DVMakeOutputFilesUnique

Set by the Make output file
names unique by adding a
suffix check box on the
Design Verifier pane.

{'on'} | 'off'

DVMaxProcessTime

Set by the Maximum analysis
time parameter on the Design
Verifier pane.

double {'300"}

15-6

Simulink Design Verifier Options

Parameter Location Values
DVMaxTestCaseSteps Set by the Maximum test int32 {'10000"'}
case steps parameter on the
Design Verifier > Test
Generation pane.
DVMaxViolationSteps Set by the Maximum int32 {'20"'}
violation steps parameter on
the Design Verifier >
Property Proving pane.
DVMode Set by the Mode parameter on |{ ' TestGeneration'} |
the Design Verifier pane. 'DesignErrorDetection' |
'PropertyProving'
DVModelCoverage- Set by the Model coverage 'None' | 'Decision' |
Objectives objectives parameter on the |{'ConditionDecision'} |
Design Verifier > Test 'MCDC' | 'EnhancedMCDC'
Generation pane.
DVModelReferenceHarness |Set by the Reference input ‘on' | {'off'}

model in generated harness
parameter on the Design
Verifier > Results pane of the
Configuration Parameters
dialog box.

DVOQutputDir

Set by Output folder on the
Design Verifier pane.

character array {'sldv_output/
$ModelName$ '}

DVParameterConstraints

Set by Constraint column in
Parameter Table on the
Design Verifier >
Parameters pane.

double array {[]}

DVParameterNames Set by Name column in double array {[]}
Parameter Table on the
Design Verifier >
Parameters pane.
DVParameterUseln- Set by Use column in cell array {[]}
Analysis Parameter Table on the

Design Verifier >
Parameters pane.

15-7

15 simulink Design Verifier Configuration Parameters

Parameter

Location

Values

DVParameters

Set by Enable parameter
configuration on the Design
Verifier > Parameters pane.

‘on' | {'off'}

DVParametersConfigFile-
Name

Set by Parameter
configuration file on the
Design Verifier >
Parameters pane.

This parameter is disabled
when
DVParametersUseConfigis
setto ‘on"'.

character array
{'sldv_params template.m'}

DVParametersUseConfig

Set by Use parameter table
on the Design Verifier >
Parameters pane.

When set to 'on’, this
parameter disables
DVParametersConfig-
FileName.

‘on' | {'off'}

DVProofAssumptions

Set by the Proof assumptions
parameter on the Design
Verifier > Property Proving
pane.

'EnableAll' | 'DisableAll’
| {'UseLocalSettings'}

DVProvingStrategy

Set by the Strategy parameter
on the Design Verifier >

'FindViolation' |
{'Prove'} |

Property Proving pane. 'ProveWithViolationDetecti
on'

DVRandomizeNoEffectData |Set by the Randomize data |'on' | {'off'}

that do not affect the

outcome parameter on the

Design Verifier > Results

pane.
DVRebuildModel- Set by the Rebuild model "Always' | {'If change is
Representation representation parameter on |detected'}

the Design Verifier pane.

15-8

Simulink Design Verifier Options

Parameter Location Values

DVReduceRationalApprox |Set by the Run additional {'on'} | 'off'
analysis to reduce instances
of rational approximation
parameter on the Design
Verifier pane.

DVRelativeTolerance Set by the Floating point double {'0.01'}
relative tolerance parameter
on the Design Verifier > Test
Generation pane.

DVReportFileName Set by the Report file name |character array { ' $ModelName
parameter on the Design $ report'}
Verifier > Report pane.

DVReportIncludeGraphics |Set by the Include screen ‘on' | {'off'}
shots of properties
parameter on the Design
Verifier > Report pane.

DVReportPDFFormat Set by the Generate ‘on' | {off'}
additional report in PDF
format parameter on the
Design Verifier > Report
pane.

DVSaveDataFile Set by the Save test datato |{'on'} | 'off'
file parameter on the Design
Verifier > Results pane.

DVSaveExpectedOutput Set by the Include expected |'on' | {'off'}
output values parameter on
the Design Verifier > Results
pane.

DVSaveHarnessModel Set by the Generate separate |'on' | {off'}
harness model after
analysis parameter on the
Design Verifier > Results
pane.

15-9

15 simulink Design Verifier Configuration Parameters

Parameter Location Values
DVSaveReport Set by the Generate report of| ‘'on' | {off'}
the results parameter on the
Design Verifier > Report
pane.
DVSFcnSupport Set by the Support S- {'on'} | off!'
Functions in the analysis
parameter on the Design
Verifier pane.
DVS1TestHarnessName Set by the Test Harness character array {' $ModelName
Name parameter on the $ sldvharness'}
Design Verifier > Results
pane.
DVS1TestFileName Set by the Test File Name character array { ' $ModelName
parameter on the Design $ test'}
Verifier > Results pane.
DVStrictEnhancedMCDC Set by the Use strict ‘on' | {'off'}
propagation conditions
parameter on the Design
Verifier > Test Generation
pane.
DVTestConditions Set by the Test conditions "EnableAll' | 'DisableAll’
parameter on the Design | {'UseLocalSettings'}
Verifier > Test Generation
pane.
DVTestgenTarget Set by the Test generation {'Model"'} |
target parameter on the 'GenCodeTopModel" |
Design Verifier > Test 'GenCodeModelRef'
Generation pane.
DVTestObjectives Set by the Test objectives '"EnableAll' | 'DisableAll’

parameter on the Design
Verifier > Test Generation
pane.

| {'UseLocalSettings'}

15-10

See Also

Parameter Location Values
DVTestSuiteOptimization |Set by the Test suite {'Auto'} |
optimization parameter on 'IndividualObjectives' |
the Design Verifier > Test 'LongTestcases' |
Generation pane. 'LargeModel (Nonlinear
Extended) '

If you analyze your model by
using the LargeModel
(Nonlinear Extended), the
software displays a warning
message that this option has
been removed and suggests
that you use Auto instead.

See Also

More About

. “Design Verifier Pane” on page 15-12
. sldvoptions

15-11

15 simulink Design Verifier Configuration Parameters

Design Verifier Pane

Analysis options

Mode: |Test generation

|v|

Maximum analysis time (s): |3{I'l]

[| Display unsatisfiable test objectives

Cutput

Cutput folder: |sldv_output/$ModelNames

[] Make output file names unique by adding a suffix

¥ Advanced parameters

Check Model Compatibility

Generate Tests

Rebuild model representation: Always

|v|

Support S-Functions in the analysis

Automatic stubbing of unsupported blocks and functions

Use specified input minimum and maximum values

[] Run additional analysis to reduce instances of rational approximation

Additional options for code analysis: |~=:e#’-,c-t;. >

Exclude and justify objectives

[] Ignore objectives based on filter

Filter file: | <empfy=

Browse. .

15-12

Design Verifier Pane

In this section...

“Design Verifier Pane Overview” on page 15-13

“Mode” on page 15-13

“Maximum analysis time” on page 15-15

“Display unsatisfiable test objectives” on page 15-15

“Output folder” on page 15-16

“Make output file names unique by adding a suffix” on page 15-17
“Check Model Compatibility” on page 15-17

“Generate Tests/Detect Errors/Prove Properties” on page 15-18

“Rebuild model representation” on page 15-18

“Automatic stubbing of unsupported blocks and functions” on page 15-19
“Run additional analysis to reduce instances of rational approximation” on page 15-19
“Use specified input minimum and maximum values” on page 15-20
“Support S-Functions in the analysis” on page 15-20

“Additional options for S-Functions” on page 15-21

“Ignore objectives based on filter” on page 15-22

“Filter file” on page 15-23

“Browse...” on page 15-23

Design Verifier Pane Overview

Specify analysis options and configure Simulink Design Verifier output.

Mode

Specify the analysis mode for Simulink Design Verifier.
Settings

Default: Test generation

Design error detection
Detects integer and fixed-point overflow errors and division-by-zero errors in a model

15-13

15 simulink Design Verifier Configuration Parameters

15-14

Test generation
Generates test cases for a model.
Property proving
Proves properties of a model.

Tip

Simulink Design Verifier specifies the value of this option when you select one of these
analysis options from the Design Verifier tab, in the Mode section:

* Select Design Error Detection, then click Detect Design Errors.

* Select Test Generation, then click Generate Tests.
* Select Property Proving, then click Prove Properties.

Dependency

Selecting Test generation enables the Display unsatisfiable test objectives
parameter.

When you set the Mode parameter, the button below Check Model Compatibility
changes as follows:

* Mode: Test generation, button reads: Generate Tests

* Mode: Design error detection, button reads: Detect Errors

* Mode: Property proving, button reads: Prove Properties

Command-Line Information

Parameter: DVMode

Type: character array

Value: 'TestGeneration' | 'DesignErrorDetection' | 'PropertyProving'
Default: 'TestGeneration'

See Also

» “Basic Workflow for Simulink Design Verifier” on page 1-29
* “What Is Design Error Detection?” on page 6-2

* “What Is Test Case Generation?” on page 7-3

* “What Is Property Proving?” on page 12-2

Design Verifier Pane

Maximum analysis time

Specify the maximum time (in seconds) that Simulink Design Verifier spends analyzing a
model.

Settings
Default: 300

The value that you enter represents the maximum number of seconds Simulink Design
Verifier analyzes your model.

Command-Line Information
Parameter: DVMaxProcessTime
Type: double

Value: any valid value

Default: 300

Display unsatisfiable test objectives

Specify whether to display warnings if the analysis detects unsatisfiable test objectives.
Settings

Default: Off

Y1 On

Displays a warning in the Simulation Diagnostics Viewer when Simulink Design
Verifier is unable to satisfy a test objective.

Off

Does not display a warning when Simulink Design Verifier is unable to satisfy a test
objective.

Tip If you select Display unsatisfiable test objectives, on the Test Generation pane,
set Test suite optimization to CombinedObjectives. If you perform test-generation
analysis on your model and the returned test objectives do not have outcomes, set Test
suite optimization to IndividualObjectives and reanalyze the model. The
IndividualObjectives strategy analyzes each objective independently and identifies
unsatisfiable objectives.

15-15

15 simulink Design Verifier Configuration Parameters

Command-Line Information

Parameter: DVDisplayUnsatisfiableObjectives
Type: character array

Value: 'on' | 'off'

Default: 'off'

Output folder

Specify a path name to which Simulink Design Verifier writes its output.
Settings
Default: sldv_output/$ModelName$

* Enter a path that is either absolute or relative to the current folder.
* $ModelName$ is a token that represents the model name.

Tip

You can use the following parameters to customize the names and locations of Simulink
Design Verifier output:

* On the Results pane:

* Data file name

* Harness model file name

* Simulink Test options > Test File name
* On the Report pane:

* Report file name
* File path of the output model
* On the Block Replacements pane:

+ File path of the output model

Command-Line Information
Parameter: DVOutputDir
Type: character array

Value: any valid path

15-16

Design Verifier Pane

Default: 'sldv_output/$ModelName$'
See Also

“Results Interpretation and Use”

Make output file names unique by adding a suffix

Specify whether Simulink Design Verifier makes its output file names unique by
appending a numeric suffix.

Settings

Default: On

Y On

Appends an incremental numeric suffix to Simulink Design Verifier output file names.
Selecting this option prevents the software from overwriting existing files that have
the same name.

Off

Does not append a suffix to Simulink Design Verifier output file names. In this case,
the software might overwrite existing files that have the same name.

Command-Line Information
Parameter: DVMakeOutputFilesUnique
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Results Interpretation and Use”

Check Model Compatibility

Run a check to assess your model for compatibility with Simulink Design Verifier. For
more information, see “Simulink Design Verifier Checks”.

15-17

15 simulink Design Verifier Configuration Parameters

Generate Tests/Detect Errors/Prove Properties
When you set the Mode parameter, this button changes as follows:
* Mode: Test generation, button reads: Generate Tests

For more information, see “What Is Test Case Generation?” on page 7-3.
* Mode: Design error detection, button reads: Detect Errors

For more information, see “What Is Design Error Detection?” on page 6-2.
* Mode: Property proving, button reads: Prove Properties

For more information, see “What Is Property Proving?” on page 12-2.

Rebuild model representation

Specify whether to rebuild model representation for Simulink Design Verifier analysis.
Settings

Default: If change is detected

Always
Always rebuild the model representation.
If change is detected

Rebuild the model representation only when the software detects any change in the
model.

Command-Line Information

Parameter: DVRebuildModelRepresentation
Type: character array

Value: 'Always' | 'IfChangeIsDetected'’
Default: 'If change is detected'

See Also

“Check Model Compatibility” on page 3-2

15-18

Design Verifier Pane

Automatic stubbing of unsupported blocks and functions
Specify whether to ignore unsupported blocks and functions during analysis.
Settings
Default: On
Y/ On

Ignores unsupported blocks and functions and proceeds with the analysis.

Off

Displays a warning when Simulink Design Verifier encounters an unsupported block
or function and asks if you want to continue the analysis.

Command-Line Information
Parameter: DVAutomaticStubbing
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

Run additional analysis to reduce instances of rational
approximation

Specify whether Simulink Design Verifier attempts to reduce the use of rational
approximation during analysis.

Settings
Default: On

41 On

When you use Simulink Design Verifier to analyze models, Simulink Design Verifier
attempts to reduce the use of rational approximation if the model. Enabling this
setting may increase analysis time.

15-19

15 simulink Design Verifier Configuration Parameters

15-20

Off

Simulink Design Verifier does not attempt to reduce the use of rational approximation
during analysis.

Command-Line Information
Parameter: DVReduceRationalApprox
Type: character array

Value: 'on' | 'off"'

Default: 'on'

Use specified input minimum and maximum values

Specify whether to generate test cases that consider specified minimum and maximum
values as constraints for all input signals in your model.

Settings
Default: On
Y On
Considers specified minimum and maximum values as constraints for all input signals.

Off
Ignores any specified minimum and maximum values.

Command-Line Information

Parameter: DVDesignMinMaxConstraints
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Minimum and Maximum Input Constraints” on page 11-2

Support S-Functions in the analysis

Specify whether to enable support for S-Functions that have been compiled to be
compatible with Simulink Design Verifier.

Design Verifier Pane

Dependency
This parameter enables Additional options for S-Functions.
Settings

Default: On

Y On

Enables support for S-Functions that have been compiled to be compatible with
Simulink Design Verifier.

Off
Simulink Design Verifier automatically stubs S-Functions during analysis.
Command-Line Information
Parameter: DVSFcnSupport
Type: character array
Value: 'on' | 'off"'
Default: 'on'
See Also
“Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-32

Configuring S-Function for Test Case Generation

“Handle Incompatibilities with Automatic Stubbing” on page 2-8

Additional options for S-Functions

Specify additional options for analyzing S-functions that have been compiled to be
compatible with Simulink Design Verifier. For more information, see “Support Limitations
and Considerations for S-Functions and C/C++ Code” on page 3-32.

Settings

Default: ''

15-21

15 simulink Design Verifier Configuration Parameters

Enter additional options for analyzing S-Functions that have been compiled to be
compatible with Simulink Design Verifier. For example, to specify the maximum size of
arrays, enter defaultArraySize = 512.

Dependency
This parameter is enabled when you select Support S-Functions in the analysis.

Command-Line Information

Parameter: DVCodeAnalysisExtraOptions
Type: character array

Value: any valid option for analyzing S-Functions
Default: '

Ignore objectives based on filter

Specify to analyze the model, ignoring the objectives in the Filter file. The Filter file
contains the model coverage objectives for test generation and design error detection
objectives that you want to filter from analysis.

Settings
Default: Off

41 On

Ignores objectives in the Filter file during test generation and design error detection
analysis.

Off

Generates results for all the objectives for test generation and design error detection
analysis, including those in the Filter file.

Dependency
This parameter enables Filter file.

Command-Line Information
Parameter: DVCovFilter
Type: character array

Value: 'on' | 'off'

15-22

Design Verifier Pane

Default: 'off'
See Also

“Coverage Filtering” (Simulink Coverage)

Filter file

Specify a folder and file name for the file that contains the model coverage objectives for
test generation and design error detection objectives that you want to filter from analysis.

Settings
Default: '’

» Specify the name of the folder and file name that contains the objectives that you want
to ignore from test generation and design error detection analysis.

Click the Browse button to select an existing Filter file.
Command-Line Information

Parameter: DVCovFilterFileName

Type: character array

Value: any valid path and file name

Default: '’

See Also

“Coverage Filter Rules and Files” (Simulink Coverage)

Filter Objectives by Using Analysis Filter Viewer on page 6-55

Browse...

Browse to the file that contains the objectives that you want to ignore from design error
detection and test generation analysis.

Dependency

This button is enabled by Ignore objectives based on filter.

15-23

15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Block Replacements

Block Replacemenis

Apply block replacements

List of block replacement rules (in order of priority):

Output model

File path of the output model:

15-24

In this section...

“Block Replacements Pane Overview” on page 15-24
“Apply block replacements” on page 15-24

“List of block replacement rules” on page 15-25
“File path of the output model” on page 15-26

Block Replacements Pane Overview

Specify options that control how Simulink Design Verifier preprocesses the models it
analyzes.

See Also

“Block Replacement”

Apply block replacements

Specify whether Simulink Design Verifier replaces blocks in a model before its analysis.
Settings

Default: Off

Design Verifier Pane: Block Replacements

Y1 On

Replaces blocks in a model before Simulink Design Verifier analyzes it.

Off
Does not replace blocks in a model before Simulink Design Verifier analyzes it.

Dependencies

This parameter enables List of block replacement rules and File path of the output
model.

Command-Line Information
Parameter: DVBlockReplacement
Type: character array

Value: 'on' | 'off"'

Default: 'off'

See Also

“Block Replacement”

List of block replacement rules

Specify a list of block replacement rules that Simulink Design Verifier executes before its
analysis.

Settings
Default: <FactoryDefaultRules>

» Specify block replacement rules as a list delimited by spaces, commas, or carriage
returns.

* The Simulink Design Verifier software processes block replacement rules in the order
that you list them.

» If you specify the default value, Simulink Design Verifier uses its factory default block
replacement rules.

Dependency

This parameter is enabled when you select Apply block replacements.

15-25

15 simulink Design Verifier Configuration Parameters

15-26

Command-Line Information

Parameter: DVBlockReplacementRulesList
Type: character array

Value: any valid rules

Default: '<FactoryDefaultRules>"

See Also

“Block Replacement”

File path of the output model

Specify a folder and file name for the model that results after applying block replacement
rules.

Settings
Default: $ModelName$ replacement

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.

* Enter a file name for the model that results after applying block replacement rules.
* $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled when you select Apply block replacements.
Command-Line Information

Parameter: DVBlockReplacementModelFileName

Type: character array

Value: any valid path and file name

Default: ' $ModelName$ replacement’

See Also

“Block Replacement”

Design Verifier Pane: Parameters

Design Verifier Pane: Parameters

Parameters

+| Enable parameter configuration Use parameter table

Parameter configuration file: |sldv_params_template.m Browse...

Parameter table

Enable Disable Clear Highlight in Mode

Find in Mode Add from File.. Export to File...

Edit...

In this section...

“Parameters Pane Overview” on page 15-28
“Enable parameter configuration” on page 15-28
“Use parameter table” on page 15-29
“Parameter configuration file” on page 15-30
“Browse...” on page 15-30

“Edit...” on page 15-31

“Enable” on page 15-31

“Disable” on page 15-31

“Clear” on page 15-31

“Highlight in Model” on page 15-31

“Use” on page 15-32

“Name” on page 15-32

“Constraint” on page 15-33

“Value” on page 15-34

“Min” on page 15-34

15-27

15 simulink Design Verifier Configuration Parameters

In this section...

“Max” on page 15-35

“Model Element” on page 15-35
“Find in Model” on page 15-36
“Add from File...” on page 15-36
“Export to File...” on page 15-36

Parameters Pane Overview
Specify options that control how Simulink Design Verifier uses parameter configurations
when analyzing models.

Enable parameter configuration

Specify whether the software uses parameter configurations when analyzing a model.
Select this option to treat parameters as variables in Simulink Design Verifier analysis.

To specify value ranges or constraints for parameters:

* Use a parameter configuration file. Enter the file name in Parameter configuration
file.

* Use the Parameter Table. Select Use parameter table.
Settings
Default: Off

Y1 On

The Simulink Design Verifier software uses specified parameter configurations when
analyzing a model.

Off

The Simulink Design Verifier software does not use parameter configurations when
analyzing a model.

Dependency

This parameter enables Parameter configuration file.

15-28

Design Verifier Pane: Parameters

Command-Line Information
Parameter: DVParameters
Type: character array

Value: 'on' | 'off'
Default: 'off'

See Also

“Define Constraint Values for Parameters” on page 5-5

Use parameter table

Enable the Parameter Table to specify value ranges or constraints for parameters.
Settings

Default: Off

4 On

Use the Parameter Table to define parameters as variables for Simulink Design
Verifier analysis.

Off
Do not use the Parameter Table to define parameters as variables for Simulink Design
Verifier analysis.

Dependency

When Enable parameter configuration is also selected, this parameter enables the
Parameter Table.

This parameter disables Parameter configuration file.

Command-Line Information
Parameter: DVParametersUseConfig
Type: character array

Value: 'on' | 'off'

Default: 'of '

15-29

15 simulink Design Verifier Configuration Parameters

15-30

See Also

“Define Constraint Values for Parameters” on page 5-5

Parameter configuration file

Specify a MATLAB function that defines parameter configurations for a model.
Settings

Default: sldv_params template.m

* The default file, sldv_params_template.m, is a template that you can edit and save.
The comments in the template explain the syntax you use to specify parameter
configurations.

* Click the Browse button to select an existing MATLAB file.
* Click the Edit button to open the specified MATLARB file in an editor.

Dependency

This parameter is enabled by Enable parameter configuration. This parameter is
disabled by Use parameter table.

Command-Line Information
Parameter: DVParametersConfigFileName

Type: character array
Value: any valid MATLAB file
Default: 'sldv_params template.m'

See Also

“Define Constraint Values for Parameters” on page 5-5

Browse...
Browse to the parameter configuration file.
Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Design Verifier Pane: Parameters

Ed itl am
Edit the current parameter configuration file.
Dependency

This button is enabled by Enable parameter configuration. This button is disabled by
Use parameter table.

Enable

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Disable

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Clear

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Highlight in Model
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

15-31

15 simulink Design Verifier Configuration Parameters

15-32

Use

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Use column specifies whether to use this rows’s named parameter and specified
constraint in the current parameter configuration.

Settings

Default: Off

41 On

Use this parameter and its specified constraint in the current parameter
configuration.

Off

Do not use this parameter and its specified constraint in the current parameter
configuration.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Name

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Name column displays the name of the parameter.
Settings

Default: empty

Design Verifier Pane: Parameters

Tips

To load the model parameters into the Parameter Table, at the bottom of the table, click
Find in Model. When possible, the software automatically generates constraint values
for each parameter.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Constraint

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Constraint column contains the specified value range for the parameter.
Settings

Default: empty

Tips

To autogenerate parameter constraints, at the bottom of the Parameter Table, click Find
in Model.

Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

15-33

15 simulink Design Verifier Configuration Parameters

15-34

Value

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Value column contains the value of the parameter in the base workspace. If the
parameter is defined in a Simulink data dictionary that is linked to the model, the Value
column contains the value of the parameter in the data dictionary.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

“Define Constraint Values for Parameters” on page 5-5

Min

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified minimum value, the Min
column contains the specified minimum value for the parameter.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

* “Define Constraint Values for Parameters” on page 5-5

Design Verifier Pane: Parameters

* Simulink.Parameter

Max

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified maximum value, the Max
column contains the specified maximum value for the parameter.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

See Also

* “Define Constraint Values for Parameters” on page 5-5
* Simulink.Parameter

Model Element

In the Parameter Table, each row represents a parameter that can be constrained to
specified values during Simulink Design Verifier analysis.

The Model Element column displays the path to the model elements where the
parameter is used.

Settings
Default: empty
Dependency

When Enable parameter configuration and Use parameter table are selected, this
column is enabled.

15-35

15 simulink Design Verifier Configuration Parameters

See Also

“Define Constraint Values for Parameters” on page 5-5

Find in Model

The software searches your model for parameters that you can configure and loads them
in the Parameter Table. If your model uses a configuration reference, Simulink Design
Verifier does not support the search for parameters when using the Find in Model
button. For more information, see “About Configuration References” (Simulink).

Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Add from File...
Adds parameters to the Parameter Table from a list stored in a file.
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

Export to File...
Exports the current parameters in the Parameter Table to a file.
Dependency

When Enable parameter configuration and Use parameter table are selected, this
button is enabled.

15-36

Design Verifier Pane: Test Generation

Design Verifier Pane: Test Generation

Test Generation

Test generation target: \Model B3
Model coverage objectives: |I"u'ICDC | - |
Test conditions: |L.Ise local settings | hd |
Test objectives: |Use local settings | - |

Maximum test case steps: |5{I'l] |

Test suite optimization: |Auto v

Relational Boundary Objectives

[] Include relational boundary objectives

Floating point absolute tolerance: 0.00001 Floating point relative tolerance: 0.01

¥ Advanced parameters
Enhanced MCDC

Use sfrict propagation conditions

Existing test cases

[| Extend existing test cases
Data file: |<empty= Browse. ..

Ignore objectives satisfied by existing test cases

Existing coverage data

[] Ignore objectives satisfied in existing coverage data

Coverage data file: <empfy> Browse. ..

15-37

15 simulink Design Verifier Configuration Parameters

15-38

In this section...

“Test Generation Pane Overview” on page 15-38

“Test generation target” on page 15-38

“Model coverage objectives” on page 15-39

“Test conditions” on page 15-40

“Test objectives” on page 15-41

“Maximum test case steps” on page 15-41

“Test suite optimization” on page 15-42

“Include relational boundary objectives” on page 15-43
“Floating point absolute tolerance” on page 15-44

“Floating point relative tolerance” on page 15-45

“Use strict propagation conditions” on page 15-46

“Extend existing test cases” on page 15-47

“Data file” on page 15-48

“Browse...” on page 15-48

“Ignore objectives satisfied by existing test cases” on page 15-49
“Ignore objectives satisfied in existing coverage data” on page 15-49
“Coverage data file” on page 15-50

“Browse...” on page 15-51

Test Generation Pane Overview

Specify options that control how Simulink Design Verifier generates tests for the models it
analyzes.

See Also

“Workflow for Test Case Generation” on page 7-5

Test generation target

Specify the target for test generation.

Design Verifier Pane: Test Generation

* Default: Model generates test cases for the model.
* Code Generated as Top Model generates tests for code generated as top model.

* Code Generated as Model Reference generates tests for code generated as
model reference.

Command-Line Information

Parameter: DVTestgenTarget

Type: character array

Value: 'Model' | 'GenCodeTopModel' | 'GenCodeModelRef" |

See Also

“Code Coverage Test Generation”“Generate Test Cases for Embedded Coder Generated
Code” on page 7-32

Model coverage objectives

Specify the type of model coverage that Simulink Design Verifier attempts to achieve.
Settings

Default: Condition Decision

None

Generates test cases that achieve only the custom objectives that you specified in
your model using, for example, Test Objective blocks.

Decision

Generates test cases that achieve decision coverage. For more information, see
“Decision” on page 7-35.
Condition Decision

Generates test cases that achieve condition and decision coverage. For more
information, see “Condition” on page 7-35.

MCDC

Generates test cases that achieve modified condition decision coverage (MCDC).
When you select MCDC, Simulink Design Verifier automatically enables every coverage
objective for decision and condition coverage. For more information, see “MCDC” on
page 7-36.

15-39

15 simulink Design Verifier Configuration Parameters

15-40

Enhanced MCDC

Generates test cases that achieve enhanced MCDC coverage. When you select
Enhanced MCDC, Simulink Design Verifier automatically enables MCDC coverage.
For more information, see “Enhanced MCDC” on page 7-36.

Command-Line Information

Parameter: DVModelCoverageObjectives

Type: character array

Value: 'None' | 'Decision' | 'ConditionDecision' | '"MCDC'| 'EnhancedMCDC'
Default: 'ConditionDecision’

See Also

“Workflow for Test Case Generation” on page 7-5

Test conditions

Specify whether Test Condition blocks in your model are enabled or disabled.
Settings

Default: Use local settings

Use local settings

Enables or disables Test Condition blocks based on the value of the Enable parameter
of each block. If a block's Enable parameter is selected, the block is enabled;
otherwise, the block is disabled.

Enable all

Enables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Condition blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information

Parameter: DVTestConditions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

Design Verifier Pane: Test Generation

See Also

* Test Condition
» “Workflow for Test Case Generation” on page 7-5

Test objectives

Specify whether Test Objective blocks in your model are enabled or disabled.
Settings

Default: Use local settings

Use local settings

Enables or disables Test Objective blocks based on the value of the Enable parameter
of each block. If a block's Enable parameter is selected, the block is enabled;
otherwise, the block is disabled.

Enable all

Enables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Disable all

Disables all Test Objective blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information

Parameter: DVTestObjectives

Type: character array

Value: 'UseLocalSettings' | 'EnableAll"' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

» Test Objective

* “Workflow for Test Case Generation” on page 7-5
Maximum test case steps

Specify the maximum number of simulation steps Simulink Design Verifier takes when
attempting to satisfy a test objective.

15-41

15 simulink Design Verifier Configuration Parameters

15-42

The analysis uses the Maximum test case steps parameter during certain parts of the
test-generation analysis to bound the number of steps that test generation uses. When
you set a small value for this parameter, the parts of the analysis that are bounded
complete in less time. When you set a larger value, the bounded parts of the analysis take
longer, but it is possible for these parts of the analysis to generate longer test cases.

To achieve the best performance, set the Maximum test case steps parameter to a
value just large enough to bound the longest required test case, even if the test cases that
are ultimately generated are longer than this value.

When you also specify LongTestcases for the Test suite optimization parameter, the
analysis uses successive passes of test generation to extend a potential test case so that it
satisfies more objectives. When this happens, the analysis applies the Maximum test
case steps parameter to each individual iteration of test generation.

Settings

Default: 10000

You can specify a value that represents the maximum number of simulation steps
Simulink Design Verifier takes when attempting to satisfy a test objective.

Command-Line Information
Parameter: DVMaxTestCaseSteps
Type: int32

Value: any valid value

Default: 10000

See Also

“Workflow for Test Case Generation” on page 7-5

Test suite optimization
Specify the optimization strategy to use when generating test cases.
Settings

Default: Auto

Design Verifier Pane: Test Generation

Auto

Analyzes the model by using a strategy that automatically adapts to the model for
better analysis performance and precision.

IndividualObjectives

Maximizes the number of test cases in a suite by generating cases that each address
only one test objective. Each test case tends to be short, that is, it includes only a few
time steps.

LongTestcases

Combines test cases to create a smaller number of test cases. This strategy generates
fewer, but longer, test cases that each satisfy multiple test objectives and create a
more efficient analysis and easier-to-review results.

Legacy LargeModel (Nonlinear Extended)

Analyzes the model by using a static strategy that does not adapt to the model. When
you analyze a model by using Legacy LargeModel (Nonlinear Extended),
Simulink Design Verifier displays a warning message that this option is deprecated
and suggests that you use Auto. Auto is most likely to produce better analysis results
than Legacy LargeModel (Nonlinear Extended).

Command-Line Information

Parameter: DVTestSuiteOptimization

Type: character array

Value: 'Auto’ | 'IndividualObjectives' | 'LongTestcases' | Legacy
LargeModel (Nonlinear Extended)

Default: 'Auto’

See Also
“Workflow for Test Case Generation” on page 7-5

Simulink Design Verifier Options on page 15-2

Include relational boundary objectives

Specify generation of test cases that satisfy relational boundary objectives. The objective
applies to blocks such as Relational Operator that have an explicit or implicit relational
operation. The tests check the relational operations in these blocks with:

* Equal operand values for integer and fixed-point operands.

15-43

15 simulink Design Verifier Configuration Parameters

15-44

* Operand values within a certain tolerance for all operands. For integer and fixed-point
operands, the tolerance is fixed. For floating-point operands, the tolerance is
computed using the inputs and a tolerance value that you specify. If you do not specify
a tolerance value, the default values are used.

Settings
Default: Off
41 On
For supported blocks, generated test cases satisfy relational boundary objectives.

Off
Generated test cases do not satisfy relational boundary objectives.

Dependencies

If you select this option, you can use default values or specify values for:

* “Floating point absolute tolerance” on page 15-44
» “Floating point relative tolerance” on page 15-45

Command-Line Information

Parameter: DVIncludeRelationalBoundary
Type: character array

Value: 'on'|'off'

Default: 'of '

See Also

» “Relational Boundary” on page 7-36
* “Model Objects That Receive Coverage” (Simulink Coverage)

Floating point absolute tolerance

Specify a value for absolute tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or
implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

Design Verifier Pane: Test Generation

» For integer operands, the tolerance value is fixed at 1.
* For fixed-point operands, the tolerance value is the least significant bit.

Settings
Default: 1.0000e-05

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max (absTol, relTol* max(|lhs|,|rhs]|)), where:

* absTol is the absolute tolerance value that you specify.
* relTol is a relative tolerance value that you can specify.
* lhs is the left operand and rhs the right operand.

* max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-43.

Command-Line Information
Parameter: DVAbsoluteTolerance
Type: double

Value: Any valid value

Default: 1.0000e-05

See Also

* “Relational Boundary” on page 7-36
* “Model Objects That Receive Coverage” (Simulink Coverage)

Floating point relative tolerance
Specify a value for relative tolerance used in relational boundary tests. The relational
boundary objectives apply to blocks such as Relational Operator that have an explicit or

implicit relational operation. The tolerance value applies only if the relational operations
in those blocks use floating point operands.

15-45

15 simulink Design Verifier Configuration Parameters

» For integer operands, the tolerance value is fixed at 1.
» For fixed-point operands, the tolerance value is the least significant bit.

Settings
Default: 0.01

For supported blocks, the relational boundary tests check the relational operations in the
block with operand values that differ by a certain tolerance. The software calculates the
tolerance value using the following formula

max (absTol, relTol* max(|lhs]|,|rhs]|)), where:

* absTol is an absolute tolerance value that you can specify.
* relTol is the relative tolerance value that you specify.

* lhs is the left operand and rhs the right operand.

* max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page
15-43.

Command-Line Information
Parameter: DVRelativeTolerance
Type: double

Value: Any valid value

Default: 0.01

See Also

* “Relational Boundary” on page 7-36
* “Model Objects That Receive Coverage” (Simulink Coverage)

Use strict propagation conditions

Specify whether to use strict propagation conditions for enhanced MCDC analysis.
Settings

Default: Off

15-46

Design Verifier Pane: Test Generation

Yl On
Use strict propagation condition for enhanced MCDC analysis.

Off
Does not use strict propagation conditions for enhanced MCDC analysis.

Dependency

This parameter is enabled when you select Enhanced MCDC as Model coverage
objectives.

Command-Line Information
Parameter: DVStrictEnhancedMCDC
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Enhanced MCDC” on page 7-36

Extend existing test cases

Extend the Simulink Design Verifier analysis by importing test cases logged from a
harness model or a closed-loop simulation model.

Settings
Default: Off
Yl On
Extends the analysis by using the logged test cases specified in Data file.

Off
Does not extend the analysis.

Dependency

This parameter enables Data file and Ignore objectives satisfied by existing test
cases.

15-47

15 simulink Design Verifier Configuration Parameters

15-48

Command-Line Information
Parameter: DVExtendExistingTests
Type: character array

Value: 'on' | 'off'

Default: 'of '

See Also

* “When to Extend Existing Test Cases” on page 8-2
* “Common Workflow for Extending Existing Test Cases” on page 8-3

Data file

Specify a folder and file name for the MAT-file that contains the logged test case data.
Settings
Default: '’

» Specify a folder and file name for the MAT-file that contains the logged test case data
in an sldvData object.

* Click the Browse button to navigate to and select an existing file.

Command-Line Information
Parameter: DVExistingTestFile
Type: character array

Value: any valid path and file name
Default: '

See Also

“Simulink Design Verifier Data Files” on page 13-10

Browse...
Browse to the MAT-file that contains the logged test case data.
Dependency

This button is enabled by Extend existing test cases.

Design Verifier Pane: Test Generation

Ignore objectives satisfied by existing test cases
Ignore the coverage objectives satisfied by the logged test cases in Data file.
Settings

Default: On

Y On

Generates results, but excludes coverage objectives satisfied by logged test cases in
Data file from the analysis.

Off

Generates results for the full test suite, including coverage objectives satisfied by the
logged test cases in Data file.

Command-Line Information

Parameter: DVIgnoreExistTestSatisfied
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

+ “Extend Test Cases for Closed-Loop System” on page 8-12
* “Simulink Design Verifier Data Files” on page 13-10
Ignore objectives satisfied in existing coverage data

Specify to analyze the model, ignoring satisfied coverage objectives, as specified in
Coverage data file.

Settings

Default: Off

4 On

Ignores satisfied coverage objectives in Coverage data file during the analysis.

15-49

15 simulink Design Verifier Configuration Parameters

15-50

Off
Generates results for all coverage objectives, including those in Coverage data file.
Dependency
This parameter enables Coverage data file.
Command-Line Information
Parameter: DVIgnoreCovSatisfied
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13
* “Test Case Extension”

Coverage data file

Specify a folder and file name for the file that contains data about satisfied coverage
objectives.

Settings
Default: '

* Specify the name of the folder and file name that contains the satisfied coverage
objectives data

Click the Browse button to select an existing MATLAB file.

Command-Line Information
Parameter: DVCoverageDataFile
Type: character array

Value: any valid path and file name
Default: '

See Also

See Also

* “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-13
+ “Test Case Extension”

Browse...

Browse to the file that contains data about satisfied coverage objectives.
Dependency

This button is enabled by Ignore objectives satisfied in existing coverage data.

See Also

More About

. “Design Verifier Pane” on page 15-12
. “Generate Test Cases for Model Decision Coverage” on page 7-7
. “Workflow for Test Case Generation” on page 7-5

15-51

15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Design Error Detection

Design Error Detection

[| Dead logic

Identify active logic

Ot of bound array access

Division by zero

Integer overflow

[| Non-finite and NaN floating-point values

[] Subnormal floating-point values

[| Specified minimum and maximum value violations

[| Data store access violations

15-52

In this section...

“Design Error Detection Pane Overview” on page 15-53

“Dead logic” on page 15-53

“Identify active logic” on page 15-53

“Out of bound array access” on page 15-54

“Division by zero” on page 15-55

“Integer overflow” on page 15-55

“Non-finite and NaN floating-point values” on page 15-56
“Subnormal floating-point values” on page 15-56

“Specified minimum and maximum value violations” on page 15-57
“Data store access violations” on page 15-58

Design Verifier Pane: Design Error Detection

Design Error Detection Pane Overview

Specify options that control how Simulink Design Verifier detects runtime errors in the
models it analyzes.

Dead logic
Specify whether to analyze your model for dead logic.
Settings
Default: Off
Yl On
Reports dead logic in your model.

Off
Does not report dead logic in your model.

Command-Line Information
Parameter: DVDetectDeadlLogic
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Dead Logic Detection” on page 6-9

Identify active logic

Specify whether to analyze your model for active logic, in addition to dead logic.
Settings

Default: Off

Y1 On
Reports active logic in your model.

15-53

15 simulink Design Verifier Configuration Parameters

15-54

Off
Does not report active logic in your model.

Dependency
To enable Identify active logic, select Dead logic.

Command-Line Information
Parameter: DVDetectActivelogic
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Dead Logic Detection” on page 6-9

Out of bound array access
Specify whether to analyze your model for out of bound array access errors.
Settings
Default: On
Yl On
Reports out of bound array access errors in your model.

Off

Does not report out of bound array access errors in your model.
Command-Line Information
Parameter: DVDetectQutOfBounds
Type: character array

Value: 'on' | 'off'
Default: 'on'

See Also

“Detect Out of Bound Array Access Errors” on page 6-38

Design Verifier Pane: Design Error Detection

Division by zero
Specify whether to analyze your model for division-by-zero errors.
Settings
Default: On
/I On
Reports division-by-zero errors in your model.

Off
Does not report division-by-zero errors in your model.
Command-Line Information
Parameter: DVDetectDivisionByZero
Type: character array
Value: 'on' | 'off"'
Default: 'on'
See Also

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-26

Integer overflow
Specify whether to analyze your model for integer and fixed-point data overflow errors.
Settings

Default: On

41 On

Reports integer or fixed-point data overflow errors in your model.

Off
Does not report integer or fixed-point data overflow errors in your model.

15-55

15 simulink Design Verifier Configuration Parameters

15-56

Command-Line Information

Parameter: DVDetectIntegerOverflow
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-26

Non-finite and NaN floating-point values
Specify whether to analyze your model for non-finite and NaN floating-point values.
Settings
Default: Off
Yl On
Reports non-finite and NaN floating-point values in your model.

Off
Does not report non-finite and NaN floating-point values in your model.

Command-Line Information
Parameter: DVDetectInfNaN
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-45

Subnormal floating-point values

Specify whether to analyze your model for subnormal floating-point values.
Settings

Default: Off

Design Verifier Pane: Design Error Detection

Yl On
Reports subnormal floating-point values in your model.

Off

Does not report subnormal floating-point values in your model.

Command-Line Information
Parameter: DVDetectSubnormal
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-45

Specified minimum and maximum value violations

Specify whether to check that the intermediate and output signals in your model are
within the range of user-specified minimum and maximum constraints.

Settings

Default: Off

Y1 On

Checks that intermediate and output signals are within the range of user-specified
minimum and maximum constraints.

Off

Does not check that intermediate and output signals are within the range of user-
specified minimum and maximum constraints.

Command-Line Information
Parameter: DVDesignMinMaxCheck
Type: character array

Value: 'on' | 'off'

Default: 'of '

15-57

15 simulink Design Verifier Configuration Parameters

15-58

See Also

“Check for Specified Minimum and Maximum Value Violations” on page 6-31

Data store access violations

Specify whether to analyze your model for data store access violations. Design error
detection checks for these violations related to Data Store Memory blocks:

* Read-before-write
e Write-after-read
* Write-after-write

Settings
Default: Off
Yl On
Reports data store access violations in your model.

Off

Does not report data store access violations in your model.
Command-Line Information
Parameter: DVDetectDSMAccessViolations
Type: character array

Value: 'on' | 'off'
Default: 'off'

See Also

“Detecting Access Order Errors” (Simulink)

Design Verifier Pane: Property Proving

Design Verifier Pane: Property Proving

Property Proving

Assertion blocks: Enable all -
Proof assumptions: Enable all -
Strategy: FindViolation -

Maximum viclation steps: |20

In this section...

“Property Proving Pane Overview” on page 15-59
“Assertion blocks” on page 15-59

“Proof assumptions” on page 15-60

“Strategy” on page 15-61

“Maximum violation steps” on page 15-62

Property Proving Pane Overview

Specify options that control how Simulink Design Verifier proves properties for the
models it analyzes.

See Also

* “What Is Property Proving?” on page 12-2

* “Workflow for Proving Model Properties” on page 12-4

* “Prove Properties in a Model” on page 12-5

Assertion blocks

Specify whether Assertion blocks in your model are enabled or disabled.
Settings

Default: Use local settings

15-59

15 simulink Design Verifier Configuration Parameters

15-60

Use local settings

Enables or disables Assertion blocks based on the value of the Enable parameter of
each block. If a block's Enable parameter is selected, the block is enabled; otherwise,
the block is disabled.

Enable all

Enables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Disable all

Disables all Assertion blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information

Parameter: DVAssertions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

* Assertion
* “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Proof assumptions

Specify whether Proof Assumption blocks in your model are enabled or disabled.
Settings

Default: Use local settings

Use local settings

Enables or disables Proof Assumption blocks based on the value of the Enable
parameter of each block. If a block's Enable parameter is selected, the block is
enabled; otherwise, the block is disabled.

Enable all

Enables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.

Design Verifier Pane: Property Proving

Disable all

Disables all Proof Assumption blocks in the model regardless of the settings of their
Enable parameters.

Command-Line Information

Parameter: DVProofAssumptions

Type: character array

Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UselLocalSettings'

See Also

* Proof Assumption
» “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Strategy

Specify the strategy that Simulink Design Verifier uses when proving properties.
Settings

Default: Prove

Prove
Performs property proofs.
FindViolation

Searches only for property violations within the number of simulation steps specified
by the Maximum violation steps option.

ProveWithViolationDetection

Searches first for property violations within the number of simulation steps specified
by the Maximum violation steps option; then it attempts to prove properties for
which it failed to detect a violation. This strategy is a combination of the Prove and
FindViolation strategies.

Dependency

Selecting FindViolation or ProveWithViolationDetection enables the Maximum
violation steps parameter.

15-61

15 simulink Design Verifier Configuration Parameters

15-62

Command-Line Information

Parameter: DVProvingStrategy

Type: character array

Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove’

See Also

* “What Is Property Proving?” on page 12-2
* “Workflow for Proving Model Properties” on page 12-4
* “Prove Properties in a Model” on page 12-5

Maximum violation steps

Specify the maximum number of simulation steps over which Simulink Design Verifier
searches for property violations.

Settings
Default: 20

The Simulink Design Verifier software does not search beyond the maximum number of
simulation steps that you specify. Therefore, it cannot identify violations that might occur
later in a simulation.

Dependency

This parameter is enabled when you set Strategy to FindViolation or
ProveWithViolationDetection.

Command-Line Information
Parameter: DVMaxViolationSteps
Type: int32

Value: any valid value

Default: 20

See Also

* “What Is Property Proving?” on page 12-2
* “Workflow for Proving Model Properties” on page 12-4

Design Verifier Pane: Property Proving

* “Prove Properties in a Model” on page 12-5

15-63

15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Results

Data file options
[¥] save test data to file
Data file name: |$ModelName$_sldvdata
| Include expected output values

[| Randomize data that do not affect the outcome

Harness mode| options
| | Generate separate hamess model after analysis
Harness model file name:
Reference input model In generated harness

Harness source: | Signal Bullde

Simulink Test options

Test File name: $ModelName$_test

Test Hamess name: | $MoedelName$_sldvharness

In this section...

“Results Pane Overview” on page 15-65

“Save test data to file” on page 15-65

“Data file name” on page 15-66

“Include expected output values” on page 15-66

“Randomize data that do not affect the outcome” on page 15-67
“Generate separate harness model after analysis” on page 15-69
“Harness model file name” on page 15-70

“Reference input model in generated harness” on page 15-70
“Harness source” on page 15-71

“Test File Name” on page 15-72

“Test Harness Name” on page 15-73

15-64

Design Verifier Pane: Results

Results Pane Overview

Specify options that control how Simulink Design Verifier handles the results that it
generates.

See Also

“Results Interpretation and Use”

Save test data to file
Save the test data that the Simulink Design Verifier analysis generates to a MAT-file.
Settings
Default: On
Yl On
Saves the test data that the analysis generates to a MAT-file.

Off
Does not save the test data that the analysis generates.
Dependency
This parameter enables Data file name.
Command-Line Information
Parameter: DVSaveDataFile
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

15-65

15 simulink Design Verifier Configuration Parameters

15-66

Data file name

Specify a folder and file name for the MAT-file that contains the data generated during the
analysis, stored in an sldvData structure.

Settings
Default: $Mode1lName$ sldvdata

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.

* Enter a file name for the MAT-file.
* $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information
Parameter: DVDataFileName

Type: character array

Value: any valid path and file name
Default: ' $Mode1lName$ sldvdata’

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

Include expected output values

Simulate the model using test case signals and include the output values in the Simulink
Design Verifier data file.

Settings
Default: Off

Y On

Simulates the model using the test case signals that the analysis produces. For each
test case, the software collects the simulation output values associated with Outport

Design Verifier Pane: Results

blocks in the top-level system and includes those values in the MAT-file that it
generates.

Off

Does not simulate the model and collect output values for inclusion in the MAT-file
that the analysis generates.

Tips

* The TestCases.expectedOutput subfield of the MAT-file contains the output
values. For more information, see “Contents of sldvData Structure” on page 13-10.

* When Include expected output values is enabled, Simulink Design Verifier
successively simulates the model using each test case that it generates. Enabling this
option requires more time for Simulink Design Verifier to complete its analysis.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVSaveExpectedOutput

Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”
Randomize data that do not affect the outcome

Specify whether to use random values instead of zeros for input signals that have no
impact on test or proof objectives.

Settings

Default: Off

15-67

15 simulink Design Verifier Configuration Parameters

15-68

Y1 On

Assigns random values to test case or counterexample signals that do not affect the
outcome of test or proof objectives in a model. This option can enhance traceability
and improve your regression tests.

Off

Assigns zeros to test case or counterexample signals that do not affect the outcome of
test or proof objectives in a model.

Tips

This option replaces default data values with random values when the Simulink Design
Verifier internal analysis engine does not specify a value. When a value does not
influence the satisfaction of a test or proof objective, the generated analysis report
indicates that value with a dash (-).

Simulink Design Verifier generated analysis reports show the setting of this option.

Enable this option to enhance traceability when simulating test cases or
counterexamples. For instance, consider the following model:

In1
L
@D 170N &D
In2 L o Cut1
Switch
In2

Only the signal entering the Switch block control port impacts its decision coverage. If
the Randomize data that does not affect outcome parameter is off, Simulink
Design Verifier uses zeros to represent the signals from Inl and In3. When inspecting
the results from test case or counterexample simulations, it is unclear which of these
signals passes through the Switch block because they have the same value. But if the
Randomize data that does not affect outcome parameter is on, the software uses
unique values to represent each of those signals. In this case, it is easier to determine
which signal passes through the Switch block.

Design Verifier Pane: Results

Dependency

This parameter is enabled by Save test data to file.
Command-Line Information

Parameter: DVRandomizeNoEffectData

Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Data Files” on page 13-10
* “Results Interpretation and Use”

Generate separate harness model after analysis
Create a harness model generated by the Simulink Design Verifier analysis.
Settings

Default: Off

Y1 On

Saves the harness model that Simulink Design Verifier generates as a model file.

Off
Does not save the harness model that Simulink Design Verifier generates.
Dependency
This parameter enables Harness model file name.
Command-Line Information
Parameter: DVSaveHarnessModel
Type: character array

Value: 'on' | 'off'
Default: 'off'

15-69

15 simulink Design Verifier Configuration Parameters

15-70

See Also

* “Simulink Design Verifier Harness Models” on page 13-18
* “Results Interpretation and Use”

Harness model file name

Specify a folder and file name for the harness model.
Settings

Default: $ModelName$ harness

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.

* Enter a file name for the harness model.
* $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Generate separate harness model after analysis.

Command-Line Information
Parameter: DVHarnessModelFileName
Type: character array

Value: any valid path and file name
Default: ' $ModelName$ harness'

See Also

* “Simulink Design Verifier Harness Models” on page 13-18

* “Results Interpretation and Use”

Reference input model in generated harness

Use a Model block to reference the model to run in the harness model.
Settings

Default: Off

Design Verifier Pane: Results

Y1 On
Uses a Model block to reference the model to run in the harness model.
Off
Uses a copy of the model in the harness model.
Tips

» If the Test Unit in the harness model is a subsystem, the values of the Simulink
simulation optimization parameters on the Configuration Parameters dialog box can
affect the coverage results.

Note The simulation optimization parameters are on the following Configuration
Parameters dialog box panes:

* Optimization pane

* Optimization > Signals and Parameters pane

* Optimization > Stateflow pane

* On the Design Verifier > Parameters pane, if you select the Apply parameters
parameter, Simulink Design Verifier uses a subsystem that contains a copy of the
original model in the harness model, even if you select Reference input model in
generated harness.

Command-Line Information
Parameter: DVModelReferenceHarness
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Harness Models” on page 13-18
* “Results Interpretation and Use”

Harness source

Specify the type of Inputs block for the harness model.

15-71

15 simulink Design Verifier Configuration Parameters

Settings
Default: Signal Builder

Signal Builder
Generates a separate harness model with the Signal Builder block as the Inputs block.
Signal Editor
Generates a separate harness model with the Signal Editor block as the Inputs block.
Dependency
This parameter is enabled by Generate separate harness model after analysis.
Command-Line Information
Parameter: DVHarnessSource
Type: character array
Value: 'Signal Builder' | 'Signal Editor'
Default: 'Signal Builder'
See Also

* “Simulink Design Verifier Harness Models” on page 13-18

Test File Name

Name and path for test file name in Simulink Test
Settings

Default: $Mode1lName$ test

* Enter a file name for the test file containing Simulink Design Verifier results.
* $ModelName$ is a token that represents the model name.

* You can enter an absolute path, or a path relative to that specified by Output folder
in the Design Verifier pane.

Dependency

This parameter is visible and enabled if you have a Simulink Test license.

15-72

Design Verifier Pane: Results

Command-Line Information
Parameter: DVS1TestFileName
Type: character array

Value: any valid path and file name
Default: ' $ModelName$ test'

See Also

* “Increase Coverage by Generating Test Inputs” (Simulink Test)

Test Harness Name

Name of the test harness in Simulink Test
Settings

Default: $ModelName$ sldvharness

* Enter a valid name for the test harness built to simulate Simulink Design Verifier test
cases. The test harness corresponds to the test file specified by the parameter Test
File name.

* The $ModelName$ token represents the model name.
* Enter a valid MATLAB identifier for the test harness name.

Dependency
This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVS1TestHarnessName
Type: character array

Value: any valid file name

Default: ' $ModelName$ sldvharness'

See Also

* “Increase Coverage by Generating Test Inputs” (Simulink Test)

15-73

15 simulink Design Verifier Configuration Parameters

Design Verifier Pane: Report

Report

Generate report of the results

Generate additional report in PDF format
Report file name:

Include screen shots of properties

Display report

15-74

In this section...

“Report Pane Overview” on page 15-74

“Generate report of the results” on page 15-74

“Generate additional report in PDF format” on page 15-75
“Report file name” on page 15-76

“Include screen shots of properties” on page 15-77
“Display report” on page 15-78

Report Pane Overview
Specify options that control how Simulink Design Verifier reports its results.

See Also

» “Simulink Design Verifier Reports” on page 13-38
* “Results Interpretation and Use”

Generate report of the results
Generate and save a Simulink Design Verifier report.
Settings

Default: Off

Design Verifier Pane: Report

Yl On
Saves the HTML report that Simulink Design Verifier generates.

Off
Does not generate a Simulink Design Verifier report.

Dependencies

When this parameter is enabled, you must enable Generate separate harness model
after analysis.

This parameter enables the following parameters:

* Generate additional report in PDF format
* Report file name

* Include screen shots of properties

* Display report

Command-Line Information
Parameter: DVSaveReport
Type: character array

Value: 'on' | 'off'
Default: 'off'

See Also

» “Simulink Design Verifier Reports” on page 13-38

* “Results Interpretation and Use”

Generate additional report in PDF format

Save an additional PDF version of the Simulink Design Verifier report.
Settings

Default: Off

Yl On
Saves an additional PDF version of the Simulink Design Verifier report.

15-75

15 simulink Design Verifier Configuration Parameters

15-76

Off
Does not save an additional PDF version of the Simulink Design Verifier report.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportPDFFormat
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Reports” on page 13-38
* “Results Interpretation and Use”

Report file name

Specity a folder and file name for the report that Simulink Design Verifier analysis
generates.

Settings
Default: $ModelName$ report

* Optionally, enter a path that is either absolute or relative to the path name specified in
Output folder.
* Enter a file name for the report that the analysis generates.

* $ModelName$ is a token that represents the model name.
Dependency

This parameter is enabled by Generate report of the results.
Command-Line Information

Parameter: DVReportFileName
Type: character array

Design Verifier Pane: Report

Value: any valid path and file name
Default: ' $ModelName$ report'

See Also

» “Simulink Design Verifier Reports” on page 13-38
* “Results Interpretation and Use”

Include screen shots of properties

Includes screen shots of properties in the Simulink Design Verifier report. Only valid in
property-proving mode.

Settings
Default: Off

41 On

Includes screen shots of properties in the Simulink Design Verifier report. Only valid
in property-proving mode.

Off

Does not include screen shots of properties in the Simulink Design Verifier report.
Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportIncludeGraphics
Type: character array

Value: 'on' | 'off'

Default: 'off'

See Also

* “Simulink Design Verifier Reports” on page 13-38
* “Results Interpretation and Use”

15-77

15 simulink Design Verifier Configuration Parameters

15-78

Display report

Display the report that the Simulink Design Verifier analysis generates after completing
its analysis.

Settings
Default: On
4 On
Displays the report that the analysis generates after completing its analysis.

Off
Does not display the report that the analysis generates after completing its analysis.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVDisplayReport
Type: character array

Value: 'on' | 'off'

Default: 'on'

See Also

* “Simulink Design Verifier Reports” on page 13-38
* “Results Interpretation and Use”

Verification and Validation

* “Test Model Against Requirements and Report Results” on page 16-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 16-8
* “Perform Functional Testing and Analyze Test Coverage” on page 16-11

* “Analyze Code and Test Software-in-the-Loop” on page 16-14

16 Verification and Validation

Test Model Against Requirements and Report Results

Requirements - Test Traceability Overview

Traceability between requirements and test cases helps you interpret test results and see
the extent to which your requirements are verified. You can link a requirement to
elements that help verify it, such as test cases in the Test Manager, verify statements in
a Test Sequence block, or Model Verification blocks in a model. When you run tests, a
pass/fail summary appears in your requirements set.

This example demonstrates a common requirements-based testing workflow for a cruise
control model. You start with a requirements set, a model, and a test case. You add
traceability between the tests and the safety requirements. You run the test, summarize
the verification status, and report the results.

Functional
requirements

System
requirements

- lpdate requirements

|

|

| bezmmm s Traceability ----
| | |
i Traceability i
i i i
| | |

Develop Develop
Develop test
specification / = detailed = casEs L= Run tests | Report results
architecture model

f

Refine

In this example, you conduct a simple test of two requirements in the set:

» That the cruise control system transitions to disengaged from engaged when a braking
event has occurred

» That the cruise control system transitions to disengaged from engaged when the
current vehicle speed is outside the range of 20 mph to 90 mph.

16-2

Test Model Against Requirements and Report Results

Display the Requirements

1

Create a copy of the project in a working folder. The project contains data,
documents, models, and tests. Enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')

run(fullfile(path, 'slVerificationCruiseStart'))

In the project models folder, open the simulinkCruiseAddReqgExample.slx
model.

Display the requirements. Click the u= icon in the lower-right corner of the model
canvas, and select Requirements. The requirements appear below the model
canvas.

Expand the requirements information to include verification and implementation
status. Right-click a requirement and select Verification Status and
Implementation Status.

16-3

16

Verification and Validation

simulinkCruiseAddRegExample
® |simul|nkD‘u|saAddRquxample » hd
o h
boolean CruiseOnOff
= £ CruiseOnOff
CruiseOnOff
angag:t‘!f Jaged
~, boolean FBrake Brat >
- efgaged
O Brake
single Speed Speed
Speed
T boolean FE—.CoaslsslSW CoastSetSw
CoastSetSw
5: boolean |
£ AccelResSw
B2 | AccelResSw Compute target speed
» || um
Requirements - simulinkCruiseAddRegExample P x

BOdE = EE= (4B

View: |Requirements v

~ % simulinkCruiseChar

v E1 Architecture Architecture

B 11 ALl Enable Disable Switch (] @400

B 12 a1z Set Speed | Decelerate Bu_. | |

B 13 AL3 Resume Speed / Accelert...)

B 15 ALS Target Speed Output T

B 16 AL Vehicle Speed Input I @400 |

B 17 ALT7 Vehicle Brake Input (] @400

B2 Functional Requirements Functional Requirements [ll l

E 3 Safety Reguirements Safety Requirements () ()

Ready 125%

Property Inspector L]

Requirement: A 1.2

Details
¥ Properties

Type: Functional -
Index: 12

Custom ID: |A1.2

Summary: |Se1 Speed / Decelerate Button

Description Rationale

4 [fooms <[<] 8| 2 ©

Set Speed/Decelerate Button

]
]
¥

The controller shall have an input button to:

set the target speed to the current vehicle speed when the cruise
control is not engaged (active)

decelerate (reduce) the target speed when the cruise control is
engaged (active)

Keywords:

P Revision information:
¥ Links

B 4= Implemented by:
TF coastsetsw

» Comments

FixedStepDiscrete

5 In the Project window, open the Simulink Test file sTReqTests.mldatx from the

tests folder. The test file opens in the Test Manager.

Link Requirements to Tests

Link the requirements to the test case.

1 In the Project window, open the Simulink Test file sIReqTests.mldatx from the

tests folder. The test file opens in the Test Manager.

select Safety Tests.

16-4

Explore the test suite and

Test Model Against Requirements and Report Results

Return to the model. Right-click on requirement S 3.1 and select Link from
Selected Test Case.

Alink to the Safety Tests test case is added to Verified by. The yellow bars in the
Verified column indicate that the requirements are not verified.

Requirements - simulinkCruiseAddRegExample P>
view: |Requirements v | | (% | 3| @ | | & E & || B il (o ML
" El ¢ Verified by:
v B 3 Safety Reguirements Safety Reguirements [][] E M@)

B 31 s31 Vehicle braking dise...))
E 32 53.2 System engagemen... [][] <
E 33 |s33 Target speed limita... [))
E 34+ s34 Speed outside limit...)() w

Ready 150% FixedStepDiscrete
2 Also add alink foritem S 3.4.

Run the Test

The test case uses a test harness SafetyTest Harnessl. In the test harness, a test
sequence sets the input conditions and checks the model behavior:

The BrakeTest sequence engages the cruise control, then applies the brake. It
includes the verify statement

verify(engaged == false,...

‘verify:brake', ...

'system must disengage when brake applied')
The LimitTest sequence engages the cruise control, then ramps up the vehicle speed
until it exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
‘verify:limit', ...
'system must disengage when limit exceeded')

Return to the Test Manager. To run the test case, click Run.

When the test finishes, review the results. The Test Manager shows that both
assessments pass and the plot provides the detailed results of each verify
statement.

16-5

16 Verification and Validation

Results and Arlifacts [E] safety Tests x Visualize x
|Fi|te' results by name or tags, e.g. fags: test W verify limit
~ Results: 2019-Jun-21 11:29:55 19
Fail |
+ [Safety Tests (]
+ [[&l Verify Statements (]
verify:brake (]
v verifylimit /] Passd | | |l | — | OSSN SUURRRRIN RRSUURI SR -
MName [\J verify:limit
Block Path SafetyTest_Harness1/Test ..
Interp Method zoh Untested LU
Sync Method union
Units
Sample Time
Data Type siTestResult T T T T T T T T T T T T
2 0 2 4 [H 10 12 14 16 18 20
3 Return to the model and refresh the Requirements. The green bar in the Verified
column indicates that the requirement has been successfully verified.
Requirements - simulinkCruiseAddRegExample L4 | |
view: |Requremenss ~| [[0 @ [2]E 4 al e Keywords: |
D S Ay L] » Revision information:
v E 3 Safety Reguirements Safety Reguirements -][] * Links
E 32 53.2 System engagement spe... [][] Bl 4= verified by:
E 33 533 Target speed limitations [] l] = Safety Tests o
E 34 53.4 Speed outside imits dise... ([NEEEDDDDDDD)
v
Ready 125% FixedStepDiscrete

Report the Results

1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create
Report.

b In the Create Test Result Report dialog box, set the options:

16-6

See Also

+ Title — SafetyTest

* Results for — ALl Tests

* File Format — DOCX

+ For the other options, keep the default selections.
¢ Enter a file name and select a location for the report.

d For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

e C(lick Create.
2 Review the report.

a The Test Case Requirements section specifies the associated requirements

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

See Also

Related Examples

. “Link to Requirements” (Simulink Test)
. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

16-7

16 Verification and Validation

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

standards |
1
I
““--—._.——ﬁ ;
| I
| I
I
i
I
* Model analysis: check
Develop detailed N Add lpropfarty N standards, check for_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
F Y N
Resolve errorsand | Replicate errors
confirm exceptions | Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

16-8

Analyze a Model for Standards Compliance and Design Errors

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’',...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 Inthe Modeling tab, select Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the
System Hierarchy.

5 Check your model for MAAB style guideline violations using Simulink Check.

In the left pane, in the By Product > Simulink Check > Modeling Standards
> MAAB 3.0 Checks folder, select:

* Check for indexing in blocks

* Check for prohibited blocks in discrete controllers

* Check model diagnostic parameters

Right-click on the MAAB 3.0 Checks node and select Run Selected Checks.

Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

To verify that your model passes, rerun the check. Repeat steps ¢ and d, if
necessary, to reach compliance.

To generate a results report of the Simulink Check checks, select the MAAB 3.0
Checks node, and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

16-9

16 Verification and Validation

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection. All the checks in the folder are selected.
In the right pane, click Run Selected Checks.
After the analysis is complete, expand the Design Error Detection folder, then
select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog
box provides tools to help you diagnose errors and warnings in your model.
a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.
b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.
¢ Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.
See Also

Related Examples

16-10

“Check Model Compliance by Using the Model Advisor” (Simulink Check)
“Collect Model Metrics Using the Model Advisor” (Simulink Check)

“Run a Design Error Detection Analysis” on page 6-4

“Prove Properties in a Model” on page 12-5

Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional testing begins with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model iteratively. Coverage measurement reflects the extent to which these tests have
fully exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Functional reguirements

Create test inputs or Add run-time

import external test data verifications
Run tests] Collect » Report
coverage results
Add expected outputs ry

Set coverage criteria

h 4

and acceptance criteria
N

v

Analyze dependencies
Refine model

Add tests
Refine requirements

Incrementally Increase Test Coverage Using Test Case
Generation

This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,
analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

16-11

16 Verification and Validation

16-12

Explore the Test Harness and the Model

1

Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’',...
‘verification', 'src', 'cruise')

run(fullfile(path, 'slVerificationCruiseStart'))

Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')
Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test) and open the Simulink Test Manager. At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx")

sltest.testmanager.view

Open the test sequence block. The sequence tests that the system disengages when
the:

* Brake pedal is pressed
* Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

In the Simulink Test Manager, click the sLReqTests test file.
To enable coverage collection for the test case, in the right page under Coverage
Settings:

* Select Record coverage for referenced models

* Use Coverage filter filename to specify a coverage filter to use for the coverage
analysis. The default setting honors the model configuration parameter settings.
Leaving the field empty attaches no coverage filter.

* Select Decision, Condition, and MCDC.

To run the tests, on the Test Manager toolstrip, click Run.

When the test finishes navigate to the test case results in the Test Manager. The
aggregated coverage results show that the example model achieves 50% decision
coverage, 41% condition coverage, and 25% MCDC coverage.

See Also

> AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO.. DECISION CONDITION MCDC +

[Pa] simulinkCruisesddReqExarmple A 3 S0% - 41% = 25% mm

1-6
Add Tests for Missing Coverage Export

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
In Results and Artifacts, select the sTReqTests test file and open the Aggregated
Coverage Results section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier. The model
being tested must either be on the MATLAB path or in the working folder.

5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test
results include coverage for the combined test case inputs, achieving increased
model coverage.

See Also

Related Examples

. “Link to Requirements” (Simulink Test)

. “Assess Model Simulation Using verify Statements” (Simulink Test)
. “Compare Model Output To Baseline Data” (Simulink Test)

. “Generate Test Cases for Model Decision Coverage” on page 7-7

. “Increase Test Coverage for a Model” (Simulink Test)

16-13

16 Verification and Validation

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Detailed model /

- s Add tests /
Requirements f------- Traceability------—- -
4 ty Refine model

T

— :

Traceability i

N 1

l :
Develop or Code analysis Verify results / Analyze Report

P »| Error detection » Run tests » / » v > P

generate code equivalence coverage results

Code metrics

h

16-14

A J

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the project.

Analyze Code and Test Software-in-the-Loop

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

4)

(1) : P CruiseOnOff
: —£ CruiseOnOff
CruiseOnOff
engaged P..‘I
(2) P Brake —E engaged
—£ Brake engaged
Brake \‘
3 P Speed
Q —£ Speed peg
Speed
(4) P CoastSetSw
—£ CoastSetSw 2
CoastSetSw S —E tspeed
tspeed
5 P Accel '
D -£ AccelResSw \ Rossw _))
AccelResSw - .
Compute target speed

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation
Advisor.

2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to
Selected objectives - prioritized . The MISRA C:2012 guidelines objective is
already selected.

16-15

16 Verification and Validation

Code Generation Objectives (System target file: ert.tic)

16-16

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Polyspace

RAM efficiency
Traceability
Safety precaution
Debugging

+

5

Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this model, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

[C& Code Generation Advisor
& Check model configuration settings against code generation objectives
0 Check for blocks not recommended for MISRA C:2012

Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
that is more compliant with MISRA C and more compatible with Polyspace. This example
shows you how to use the Model Advisor to check your model before generating code.

1

At the bottom of the Code Generation Advisor window, select Model Advisor.

I+

+

Analyze Code and Test Software-in-the-Loop

Under the By Task folder, select the Modeling Standards for MISRA C:2012
advisor checks.

Click Run Selected Checks and review the results.

If any of the tasks fail, make the suggested modifications and rerun the checks until
the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1

In the Simulink editor, right-click Compute target speed and select C/C++ Code >
Build This Subsystem.

Use the default settings for the tunable parameters and select Build.

After the code is generated, right-click Compute target speed and select Polyspace >
Options.

Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

16-17

16 Verification and Validation

W Palyspace

IFille Edit Tools Window Help

|

CIE ~]Q |

Code Metrics

simulinkCruis...Example_config x | 4 B
- Target & Compiler Coding Standards & Code Metrics
Macros
- Envirenment Settings
----- Inputs & Stubbing
lllll Multitasking [Set checkers by file 3
& Coding Standards & Code Metrics Coding Standards
----- Bug Finder Analysis
- Code Prover Verification [] Check MISRA C:2004 reguired-rules View
Verification Assumptions [[] Check MISRA AC AGC OBL-rules View
Check Behavior -
- Precision Check MISRA C:2012 mandatory-required || iew
‘- Sealing [[] Use generated code requirements
----- Reporting i —
_____ Run Settings Effective boolean types | Type |:I‘]:| * ¥ .
----- Advanced Settings boolean_T
[] Chedk SEI CERT-C all View
I:‘ Chedk ISO/IEC TS 17961 |l View
[Chedk custom rules Edit

Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

Save and close the Polyspace configuration window.

From your model, right-click Compute target speed and select Polyspace > Verify >
Code Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

16-18

Analyze Code and Test Software-in-the-Loop

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOn0ff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

ts\MATLAB project: pleshcruise3\results_Compute\Compute

¥ Polyspace Bug Finder - Compute \\thome-00-ah\mhaines\Doc

File Reporting Metrics Tools Window Help

& 5 & 5> run @ stop | &

_

] Results Li

Al results | Teew F- <ag> @ showing 118/118 ¥ Jmmke—muﬂ—m—ncﬂi—rmmmﬂ
Family < Information & File F Chss <7 Function o7 Severity fdefine :nmpur.a_IN_cRUISE ((uin:a_IJ 10) .
[-MISRA C:2012 49 2 #define Cumput.e:IN:CDast. { tuintE:TJ 20)

2 Unused code 32
4 Code design 3
-8 Declarations and definitions 14
=-8.7 Functions and objects should not be defined with external inkage if they are referenced in only one transiation unit. 14

#define Compute IN NO_ACTIVE_CHILD
#define Compute_IN_OFF

#define Compute_IN ON

#define Compute IN_STANDBY

({uint&_T)OU)
({uinte_T) 20)
({uints_T)10)
((uintg_T)20)

[* Category: Advisory
¥ * Category: Advisory

Global Scope
Global Scope

Compt uta 4
Compute.c

—r Gobil Scope e Scope ||

File Scope
File Scope

Variable trace

Compute.c|

=l Result Review

~ MISRA C:2012 8.7 (Advisory) (2

Functions and objects should not be defined with external linkage if they are referenced in only one translation unit.
Variable ‘Compute_M' should have internal linkage.

/* Real-time model */

7
RT_MODEL_Compute_T Compute M :
] - _ =

~% * Category: Advisory Compute.c Global Scope File Scope
L= ® Category: Advisory Compute.c Global Scope File Scope #define Compute IN_Steady ({uintg T)30)
1% * Category: Advisory Compute.c Global Scope File Scope
; = * Category: Advisory Compute.c Global Scope File Scope /* Block states (auto storage) */
Category: Advisory Compute.c Global Scope File Scope W _Compute T Enmpme DH;

<

[EE =7 uoDEL_Compute T +consc Compute M = sCompute M
ﬁ] Project Browser Results List
b/ Result Details /* Exported data definition */

/* Definition for custom storage class: Gleobal */

7
boolean T AccelResSw;

Severity ~ | |Enter comment here... boolean T Grake:
- v
Status ~ boolean T CoastSetSw;

7
boolean T CruiseCnOff:
uinté_T Speed:
boolean T engaged;

uints T tspesd;

/* Definition for custom storage class: Global */

7

uintg& T holdrate = 5U;
v

uintg_T incdec = 10;
-7

uint® T maxtspeed = 90U;
v

<

[afed 1ie3s [A]|

[¥ Configuration l [¥] Resuft Demlsl

{2 Dashboard { [¥] Source I [Z] output Summery|

2 In your model, right-click Compute target speed and select Polyspace > Options.

16-19

16 Verification and Validation

3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.
This option allows you to choose a subset of MISRA rules in the Polyspace
configuration.

Click the Configure button.

5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics
pane, select the check box Check MISRA C:2012 and from the drop-down list,
select single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules
that are applicable to a single unit.

Save and close the Polyspace configuration window.
Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed
by itself. When you limited the rules Polyspace checked to the single-unit subset, only
two violations were found.

Computed version 1.0 (24/06/2019) - Author: tbedore
Analysis information: Configuration

Review Scope: All results - View all results in this scope

Code covered by analysis

100% (2/2)

Functions 100% (4/4)

No defects found

MISRA (:2012 violations by file
Total: 2 viclation(s) found

16-20

See Also

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

If they are not open already, open your results in the Polyspace environment.
From the toolbar, select Reporting > Run Report.

Select BugFinderSummary as your report type.
Click Run Report.

A W N R

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug
Finder)

. “Test Two Simulations for Equivalence” (Simulink Test)
. “Export Test Results and Generate Test Results Reports” (Simulink Test)

16-21

Glossary

abstraction

analysis model

assumption

block replacement rule

component verification

condition coverage

constraint

counterexample

coverage objective

The process of ignoring certain aspects of model behavior
that do not affect the test objective or property under
investigation.

The target model for a Simulink Design Verifier analysis. If
you select an atomic subsystem for analysis, the analysis
model is generated by extracting the subsystem to a new
model.

A property that is assumed to be true during a property
proof. The proof result holds only when the assumption is
true.

A rule that is registered with Simulink Design Verifier and
defines how instances of specific blocks are replaced by an
alternate implementation. The software uses MATLAB
commands to define when and how to apply a block
replacement rule (see “Block Replacements for
Unsupported Blocks” on page 4-9).

The process of verifying an individual components in a
model. You can verify a component within the execution
context of the model, or independently of its parent model.

Measures the percentage of the total number of logic
conditions associated with logical model objects that the
simulation actually exercised. Enabling condition coverage
causes every decision and condition coverage outcome to
be enabled. See “Types of Model Coverage” (Simulink
Coverage).

A property that is forced to be true during test case
generation.

A test case that demonstrates a property violation.

A test objective that defines when a coverage point results
in a particular outcome.

Glossary-1

Glossary

coverage point

decision coverage

floating-point
approximation

invalid test case

modified condition/
decision coverage
(MCDC)

nonlinear arithmetic

Glossary-2

A decision, condition, or MCDC expression associated with
a model object. Each coverage point has a fixed number of
mutually exclusive outcomes.

Measures the percentage of the total number of
simulation paths through model objects that the
simulation actually traversed. Decision coverage is a
subset of modified decision/condition coverage. See
“Types of Model Coverage” (Simulink Coverage).

The process of approximating floating-point numbers
using rational numbers (i.e., fractions whose numerator
and denominator are small integers). The Simulink Design
Verifier software performs floating-point approximations
during its analysis. It can generate invalid test cases that
result from numerical differences. For example, given a
large enough floating-point number X, the expression
x==(x+1) can be true; however, this expression never
holds if x is a rational number.

A test case that does not satisfy its objectives.

Measures the independence of logical block inputs and
transition conditions associated with logical model objects
during the simulation. When you set the coverage
objective to MCDC, Simulink Design Verifier automatically
enables every coverage objective for decision coverage
and condition coverage as well.

Note that MCDC test cases are not generated for XOR
configured logic operators. You can achieve MCDC by
using the same tests that would be generated from AND
configured blocks or OR configured blocks.

See “Types of Model Coverage” (Simulink Coverage).

A computation in the model that cannot be expressed as a
combination of mutually exclusive linear expressions.
Nonlinear arithmetic can affect a property or test
objective, and it can cause the analysis to return an error.
In this case, you should apply simplifying approximations
and abstractions.

Glossary

property

property violation

test case

test harness

test objective

Test Objective block

unsatisfiable test
objective

validated property

A logical expression of the signals and data values, within
a model, that is intended to be proven true during
simulation. Properties evaluate at specific points in the
model.

The condition during a simulation when a property is
false.

A sequence of numeric values and input data time that you
input to a model during its simulation.

A model that runs test cases on an analysis model.

A logical expression of the signals and data values, within
a model, that is intended to be true at least once in the
resulting test case during simulation. Test objectives
evaluate at specific points in the model.

The block that you add to a model to define test objectives.
In the block mask, define test objectives as values or
ranges that an input signal must satisfy during a test case.

The status of a test objective that indicates a test case
cannot be generated for the specified approximations.
This includes floating-point approximations and maximum-
step limitations specified in the Design Verifier > Test
Generation pane of the Configuration Parameters dialog
box.

The status of a property that indicates no counterexample
exists, subject to floating-point approximations and the
settings specified in the Property Proving pane of the
Configuration Parameters dialog box.

Glossary-3

